引(yin)言(yan)
物理气(qi)相(xiang)沉(chen)积(ji)技(ji)术(Physical Vapor Deposition,PVD),具有相对较(jiao)低的(de)工(gong)艺(yi)温(wen)度,沉积过程便(bian)于控制(zhi),制备出(chu)的(de)涂层性能优异(均匀性高(gao)、残余应力小(xiao))和易(yi)于(yu)工业(ye)化应用等优(you)点(dian),在(zai)耐腐(fu)蚀(shi)涂层(ceng)、超(chao)硬(ying)涂层、光(guang)学(xue)涂层(ceng)、耐摩擦涂层(ceng)以及复(fu)合(he)多层涂(tu)层的(de)制(zhi)备(bei)等(deng)领域都(dou)得到广泛(fan)的(de)应(ying)用[1-6],因此越(yue)来(lai)越受(shou)到研(yan)究(jiu)者的(de)关注(zhu)[7]。PVD技(ji)术主(zhu)要(yao)包(bao)括蒸(zheng)镀技术、阴(yin)极电弧(hu)离(li)子镀(du)技术(shu)和(he)磁控溅(jian)射技术(shu)。其(qi)中(zhong)阴(yin)极电(dian)弧离(li)子镀技术具(ju)有沉(chen)积速率(lv)高以及靶材(cai)粒子(zi)离(li)化率(lv)高(gao)的优势,但(dan)在(zai)加工(gong)过程(cheng)中(zhong)不可避免(mian)地(di)会产(chan)生(sheng)金属(shu)液滴,影(ying)响了(le)涂(tu)层(ceng)的致(zhi)密程(cheng)度[8]。蒸(zheng)镀(du)技(ji)术(shu)的优(you)势(shi)在(zai)于加工(gong)成本低(di),制(zhi)备出(chu)的(de)涂层(ceng)纯度(du)较(jiao)高,但(dan)其(qi)缺点在(zai)于(yu)加(jia)工过程(cheng)中粒(li)子能量较(jiao)低(di),制(zhi)备(bei)出的(de)涂层(ceng)与基(ji)体(ti)结(jie)合(he)较差。相比于以(yi)上两(liang)种技(ji)术,磁控(kong)溅(jian)射(she)技(ji)术(shu)由于(yu)其(qi)加工过(guo)程(cheng)中(zhong)粒(li)子能量(liang)易于(yu)调(diao)控(kong),制(zhi)备出的涂(tu)层致(zhi)密(mi)、均匀(yun)性高(gao)在现代(dai)装备(bei)制造(zao)业(ye)中获得了广泛的(de)应(ying)用。
近(jin)些(xie)年(nian)来(lai)磁控(kong)溅(jian)射(she)技术(shu)发(fa)展(zhan)迅(xun)猛(meng),产(chan)生了(le)诸(zhu)如直(zhi)流磁(ci)控溅射(she)(DCMS)、高(gao)功率脉(mai)冲(chong)磁(ci)控(kong)溅(jian)射(she)技术(HiPIMS)等(deng)新技(ji)术,但涂(tu)层沉积速(su)率(lv)较低[9-11]制约(yue)了磁(ci)控(kong)溅(jian)射(she)规(gui)模化(hua)应(ying)用(yong)。例(li)如(ru),采(cai)用(yong)DCMS技术沉(chen)积金属(shu)涂层(ceng)的(de)速率约为10nm/s[12],对于(yu)复合(he)成(cheng)分(fen)涂层(ceng),尤其(qi)是(shi)氧(yang)化物(wu)涂层,其(qi)沉积(ji)速率甚至(zhi)更低[13-15]。由于磁(ci)控(kong)溅射过(guo)程(cheng)中靶材(cai)表(biao)面的溅射(she)是产(chan)生涂层粒子的(de)主要(yao)机(ji)制(zhi),且溅射(she)强度与放电功(gong)率(lv)成(cheng)正(zheng)比(bi),放(fang)电(dian)功(gong)率受(shou)到电源、磁(ci)场(chang)强度(du)和冷(leng)却(que)系统等设备(bei)本(ben)身(shen)的限(xian)制,仅依(yi)靠提(ti)高放电(dian)功(gong)率来(lai)提(ti)升(sheng)涂(tu)层沉积(ji)速率(lv),其(qi)效果(guo)非常有(you)限。
最近的研(yan)究(jiu)表(biao)明,当靶材(cai)表(biao)面[16–22]上发生溅(jian)射(she)作(zuo)用(yong)时(shi),还(hai)出现了(le)蒸(zheng)发(fa)或(huo)升(sheng)华,涂(tu)层的沉积速(su)率(lv)可能会(hui)显(xian)著增加(jia)1~2个(ge)数(shu)量(liang)级(ji)。与(yu)溅(jian)射(she)作用不同(tong),只有在(zai)靶材(cai)表面温度极高的情(qing)况下,才会(hui)出现(xian)靶(ba)材(cai)原子的蒸(zheng)发或升华。靶材(cai)蒸发速(su)率(lv)随着(zhe)温(wen)度的(de)升高而(er)几(ji)乎(hu)呈指(zhi)数(shu)增长,从这个(ge)角度看,如果(guo)能够(gou)溅(jian)射液(ye)态(tai)靶(ba)材,磁控(kong)溅(jian)射的涂(tu)层(ceng)沉积(ji)速率将(jiang)获(huo)得极(ji)大(da)提高。液态(tai)靶材磁(ci)控溅(jian)射技术由Danilin等(deng)[23]最(zui)早提出(chu),该技术一(yi)经报(bao)道,就受(shou)到(dao)国内外学者(zhe)和工(gong)业(ye)界的(de)广泛关(guan)注。
由(you)于先进(jin)装(zhuang)备(bei)制造(zao)业(ye)、航(hang)空(kong)航天(tian)、半导体(ti)行(xing)业(ye)对高性能涂(tu)层的(de)迫(po)切(qie)需求(qiu),液(ye)态(tai)靶(ba)材(cai)磁(ci)控(kong)溅射技术(shu)具(ju)有(you)提(ti)高涂层(ceng)沉(chen)积(ji)速(su)率(lv)以(yi)及(ji)提(ti)升(sheng)能(neng)量利(li)用效率(lv)的突(tu)出(chu)优(you)势(shi),使(shi)其(qi)有望成(cheng)为涂(tu)层(ceng)制(zhi)备主(zhu)流技术(shu)。国内(nei)外学(xue)者对液态靶材磁(ci)控溅(jian)射技(ji)术(shu)仍处于探索(suo)研究(jiu)阶段(duan),因此(ci)本文总(zong)结国(guo)内(nei)外近年(nian)来(lai)对(dui)该技术的研(yan)究成果(guo),并对(dui)该项技(ji)术(shu)未来(lai)的发展(zhan)趋势(shi)进行(xing)讨论与展(zhan)望。
1、液(ye)态(tai)靶材(cai)磁控(kong)溅射技术特点及(ji)优势(shi)
1.1 液态(tai)靶(ba)材(cai)磁控(kong)溅(jian)射(she)技(ji)术(shu)原(yuan)理(li)
液态(tai)靶材磁控溅(jian)射(she)放(fang)电装(zhuang)置主要由(you)真(zhen)空系(xi)统(tong)、供气系统、磁控(kong)系(xi)统(tong)、冷却(que)系(xi)统、电(dian)源及其(qi)调(diao)制系统组成,与传(chuan)统磁(ci)控(kong)溅射(she)放电装置(zhi)相(xiang)类(lei)似,如图(tu)1所示[24]。但(dan)在液(ye)态(tai)靶材(cai)磁(ci)控溅(jian)射(she)系统(tong)中(zhong),靶材需(xu)要被放置在坩(gan)埚(guo)中(zhong),同(tong)时(shi)调整坩(gan)埚与(yu)冷(leng)却系(xi)统(tong)的间(jian)距(ju),使(shi)靶(ba)材(cai)在(zai)涂层制备过(guo)程中(zhong)始终保(bao)持熔(rong)化(hua)状(zhuang)态(tai)。在(zai)放(fang)电(dian)开始(shi)时,靶(ba)材(cai)一般是未熔(rong)化(hua)的(de),通过(guo)调(diao)整(zheng)放电(dian)功(gong)率(lv),靶材(cai)在(zai)等离子体轰击(ji)作用下逐(zhu)渐被(bei)加热(re)至(zhi)熔(rong)化状态(tai)。在靶材熔化后(hou),通过(guo)调整(zheng)放(fang)电(dian)参(can)数(shu)来(lai)进行(xing)所(suo)需涂(tu)层(ceng)的(de)沉积。

1.2 液(ye)态(tai)靶(ba)材磁(ci)控(kong)溅射放(fang)电(dian)伏(fu)安特性(xing)
研(yan)究(jiu)液态(tai)靶材(cai)放电(MLT)的伏(fu)安特(te)性(xing)曲(qu)线,对于深(shen)入理(li)解(jie)放电(dian)机(ji)制(zhi)、进(jin)一步探(tan)索粒(li)子的传输机制,对(dui)后(hou)期(qi)在涂层(ceng)制备(bei)过程中(zhong)具(ju)体(ti)工(gong)艺(yi)参数(shu)的选择(ze)具有(you)重要的(de)指导(dao)意义。关于液态靶材放(fang)电(dian)特(te)性,目前学界普(pu)遍(bian)认为是(shi)由(you)于高(gao)温(wen)下剧(ju)烈(lie)的热电子发射导致(zhi)液(ye)态(tai)靶材(cai)的放(fang)电(dian)电(dian)流(liu)显著(zhu)增高,放电(dian)电压相比于(yu)固(gu)态(tai)靶材(cai)有明显(xian)的(de)降(jiang)低。
Shapovalov等(deng)[25]研(yan)究(jiu)了在(zai)纯(chun)氩气氛(fen)中Ti靶在(zai)高温条(tiao)件下直(zhi)流(liu)磁(ci)控(kong)溅(jian)射(she)过程(cheng)的放电(dian)特性变(bian)化趋势,如图2(a)所(suo)示,随着(zhe)放(fang)电电(dian)流升高,放(fang)电(dian)电(dian)压呈(cheng)现(xian)出先(xian)增大后(hou)减小(xiao)的趋(qu)势,并且(qie)在(zai)电(dian)流为(wei)3A时(shi),放(fang)电(dian)电压出(chu)现最(zui)大值。呈(cheng)现这种(zhong)变化趋(qu)势(shi)的主(zhu)要原因(yin)是(shi)在(zai)第(di)一个(ge)阶段放电(dian)电(dian)流(liu)主(zhu)要由离(li)子电流(liu)(I+)及(ji)二次电子电(dian)流(liu)(γI+)组成,因(yin)此(ci)放电(dian)电压(ya)随放电电流增(zeng)高(gao)而增(zeng)大。当(dang)电(dian)流(liu)增(zeng)大(da)至3A后,由(you)于此前(qian)热(re)量的积(ji)累(lei),靶(ba)材表面(mian)温度显(xian)著(zhu)升(sheng)高,因此(ci)热(re)电(dian)子(zi)发(fa)射十(shi)分剧烈(lie)并主(zhu)导(dao)了(le)放(fang)电(dian)过程,热电(dian)子(zi)电(dian)流(liu)(ITe)不(bu)断增大,放电(dian)电压因此(ci)降低。图2(b)给(gei)出(chu)了(le)放电总电(dian)流与离子(zi)-二(er)次(ci)电(dian)子电(dian)流之间(jian)的(de)变化(hua)关(guan)系(xi),其(qi)中α如(ru)式(1)所(suo)示:

式(shi)中(zhong):α为放电(dian)总(zong)电流与(yu)离子(zi)-二次(ci)电(dian)子(zi)电(dian)流(liu)的(de)比(bi)值。

可(ke)见(jian)当放电(dian)电(dian)流大于3A后(hou),靶表面温(wen)度升高(gao)而引发的(de)热电(dian)子(zi)发(fa)射十(shi)分显(xian)著。Shapovalov等[26]还研究(jiu)了热(re)Ti靶与冷(leng)Ti靶在纯氩气氛中(zhong)放(fang)电(dian)伏安(an)特(te)性的(de)异同,如(ru)图(tu)3所(suo)示(shi)。在电(dian)流密(mi)度(du)j小于75mA/cm2时(shi),二(er)者没有(you)明显(xian)差(cha)异(yi),但(dan)当电流密(mi)度(du)大于75mA/cm2时,热Ti靶的放电电(dian)压显著(zhu)降低,但冷Ti靶的(de)放(fang)电(dian)电压(ya)仍(reng)然随电流(liu)密(mi)度(du)的(de)升(sheng)高(gao)而增大(da)。这(zhe)说明在(zai)强制(zhi)冷却(que)条件(jian)下(xia)的Ti靶(ba)热(re)电子(zi)电(dian)流(liu)发(fa)射效(xiao)应不(bu)明(ming)显,只(zhi)有靶表面(mian)处于(yu)高温状态(tai)下才(cai)会(hui)有剧烈(lie)的热电(dian)子(zi)发射。

Zhukov等(deng)[27]对在(zai)纯(chun)氩气氛中(zhong)Al靶(ba)从固(gu)态到液(ye)态(tai)的(de)直流(liu)磁控溅(jian)射(she)放(fang)电过(guo)程(cheng)进(jin)行(xing)了(le)研究,检(jian)测(ce)了(le)放(fang)电电(dian)流(liu)、电(dian)压(ya)及(ji)坩(gan)埚温度(du)随时(shi)间的变(bian)化(hua)趋势,如(ru)图4所(suo)示,放电(dian)过(guo)程(cheng)中(zhong)直流(liu)电(dian)源设(she)置为恒功率模式(shi)运行(xing)。研(yan)究(jiu)结果表明,随靶(ba)材温度上升,放电电流(liu)逐(zhu)渐增大,放电(dian)电压先(xian)增(zeng)高(gao)后降(jiang)低(di)并在(zai)靶材完全(quan)熔(rong)化后保持(chi)稳(wen)定(ding)。值得注(zhu)意(yi)的是(shi),在(zai)靶(ba)材完全熔(rong)化后,放(fang)电(dian)电流相比于固态(tai)时增大了一倍(bei),这主要(yao)是(shi)液(ye)态(tai)靶材蒸(zheng)发出的金(jin)属原(yuan)子进(jin)一(yi)步电(dian)离(li)以(yi)及(ji)热(re)电(dian)子(zi)发射的(de)增(zeng)加(jia)所(suo)造成的。

1.3 液态(tai)靶材(cai)磁控溅射(she)放电等(deng)离子(zi)体特性(xing)
涂层沉积(ji)速率主要取决于(yu)放(fang)电等离(li)子(zi)体(ti)中(zhong)靶(ba)材(cai)粒子的密(mi)度,因此(ci)研究MLT放(fang)电(dian)过(guo)程中(zhong)的等离子体(ti)特(te)性可(ke)以(yi)为调控(kong)涂(tu)层的沉积速率及质(zhi)量提(ti)供理(li)论(lun)指导(dao),并(bing)有助(zhu)于(yu)深(shen)入(ru)理(li)解(jie)液态(tai)靶(ba)材的(de)放电(dian)机(ji)理。
Kolodko等(deng)[28]利(li)用(yong)质(zhi)谱(pu)仪探(tan)究了液态(tai)Cu靶在(zai)直(zhi)流磁(ci)控溅(jian)射放(fang)电过(guo)程(cheng)中衬底附近(jin)的(de)离子(zi)通(tong)量(liang),检(jian)测结(jie)果如图5所(suo)示。结(jie)果表(biao)明(ming),液(ye)态Cu靶在(zai)放(fang)电(dian)过(guo)程中,即使(shi)没有工(gong)作气(qi)体的参与(yu),也能(neng)处(chu)于(yu)一(yi)种(zhong)独特(te)的(de)“无(wu)气自(zi)溅(jian)射”状态,在(zai)等离(li)子体(ti)质(zhi)谱(pu)分析(xi)中(zhong),未(wei)检(jian)测(ce)到(dao)Ar粒子的存(cun)在,而固(gu)态(tai)Cu靶的放电过程则必(bi)须(xu)依(yi)赖于(yu)工(gong)作气体粒子(Ar+和Ar2+)的(de)参与(yu)。另外,液(ye)态(tai)Cu靶在(zai)“无(wu)气(qi)自溅射(she)”放(fang)电模式(shi)中(zhong)所展现出(chu)的独(du)特(te)性质(zhi),可(ke)能(neng)会(hui)显著提高(gao)所沉积Cu涂层(ceng)的(de)纯(chun)度。因(yin)为(wei)在(zai)传(chuan)统的(de)固(gu)态靶磁(ci)控(kong)溅射(she)体(ti)系中(zhong)气(qi)体离子(zi)和(he)原(yuan)子会(hui)从(cong)等(deng)离子(zi)体中(zhong)进(jin)入到正(zheng)在(zai)沉(chen)积(ji)的(de)涂层中,影(ying)响(xiang)沉(chen)积涂(tu)层(ceng)的纯度。Kaziev等[29]对放电等离(li)子(zi)体(ti)的(de)发(fa)射光(guang)谱(OES)研(yan)究结(jie)果同样证实了这(zhe)点(dian),如图6所示,当(dang)液(ye)态(tai)Cu靶(ba)处于(yu)无(wu)气自溅(jian)射放电(dian)状态(tai)时(shi),放电等(deng)离子(zi)体(ti)中(zhong)主要(yao)为(wei)Cu原(yuan)子和Cu+离子(zi),工作气(qi)体(ti)含量较少(shao)。


Tumarkin等[30]的(de)研究(jiu)证(zheng)实了(le)在无(wu)工(gong)作(zuo)气(qi)体(ti)的(de)情况(kuang)下,液态Cu靶可以仅依靠(kao)电离(li)自身蒸发(fa)出的原(yuan)子(zi)维(wei)持等离子(zi)体(ti)放电(dian)。相(xiang)比(bi)于(yu)存(cun)在工作气(qi)体(ti)的(de)情(qing)况下(xia)(pAr=1.0Pa),在放电电流(liu)密度(du)相(xiang)同(tong)时,液(ye)态(tai)Cu靶(ba)无气自(zi)溅射(she)模(mo)式(shi)(pAr=0Pa)的(de)放电(dian)电压降(jiang)低了(le)约10%,如(ru)图7(a)所示(shi),这(zhe)主要是由于金(jin)属原子(zi)比(bi)气体(ti)原子(zi)的(de)电(dian)离电(dian)位更(geng)低。Tumarkin等(deng)[30]还(hai)研究(jiu)了(le)液(ye)态(tai)Cu靶在脉冲放(fang)电(dian)条件(jian)下(xia)(IMLT)等离(li)子体(ti)密度(du)和(he)电离度,如(ru)图7(b)所示,等(deng)离子(zi)体密(mi)度和(he)电离度随(sui)放电(dian)功(gong)率(lv)密度(du)增(zeng)大(da)而(er)逐(zhu)步增(zeng)加(jia),电离(li)度在(zai)距Cu靶表(biao)面(mian)5cm处(chu)约为60%,呈现出HiPIMS的典型(xing)特(te)征(zheng)。同(tong)时(shi)还发(fa)现(xian),由于液(ye)态(tai)Cu靶(ba)蒸(zheng)发出的(de)大量金属(shu)原子(zi),使得等离子体(ti)强电离区(qu)域膨(peng)胀(zhang),因此(ci)增(zeng)加放(fang)电(dian)功率(lv)会使(shi)等离子(zi)体(ti)密(mi)度(du)随距离(li)增(zeng)加而变(bian)化(hua)的梯度(du)减(jian)小(xiao),在P=2800W/cm2时(shi),等离(li)子(zi)体(ti)密(mi)度(du)与(yu)靶表面(mian)间距呈(cheng)线性关(guan)系。

1.4 液(ye)态(tai)靶(ba)材(cai)磁控溅射(she)优(you)势
近(jin)年来(lai),对(dui)MLT技术的研究表明,其最大的(de)优势(shi)在于能(neng)量(liang)利(li)用(yong)效率高(gao)。在沉积(ji)纯金属涂(tu)层(ceng)时(shi),相(xiang)比(bi)于固(gu)态(tai)靶(ba)材,由(you)于(yu)蒸(zheng)发和溅(jian)射的共同(tong)作用(yong),液态靶(ba)材(cai)的沉积(ji)速(su)率可(ke)提(ti)高10~100倍(bei)。Bleykher等(deng)[31]研(yan)究(jiu)了(le)Pb靶(ba)的放电功率(lv)密(mi)度(du)与(yu)靶表面(mian)侵(qin)蚀速率的(de)变(bian)化(hua)趋(qu)势(shi),如图8所(suo)示,当(dang)放电(dian)功(gong)率(lv)密度(du)较低(di)时,靶表面温(wen)度(du)较(jiao)低(di),溅射(she)是影响靶(ba)表面侵蚀速率(lv)的主(zhu)要因素,当(dang)靶表(biao)面(mian)温度(du)达到(dao)熔(rong)点(dian)的(de)1.65倍后(hou),蒸发(fa)导(dao)致(zhi)靶(ba)表(biao)面(mian)侵蚀速(su)率(lv)呈(cheng)指(zhi)数(shu)增加,取(qu)代溅射成(cheng)为影响(xiang)靶(ba)表(biao)面(mian)侵蚀(shi)速(su)率的主(zhu)要因(yin)素(su)。在蒸发占主(zhu)导地位(wei)的情况(kuang)下(xia),沉(chen)积过程(cheng)粒子(zi)流(liu)密度由1016atoms/(cm2·s)提升(sheng)至1018atoms/(cm2·s),涂(tu)层沉积速率显(xian)著提高(gao)到(dao)102~103nm/s,如(ru)图(tu)9所示。Bleykher等(deng)还计(ji)算了Cr靶(ba)和(he)Ti靶(ba)沉积(ji)速率随(sui)放电功(gong)率密度(du)的(de)变(bian)化(hua)趋(qu)势,研(yan)究(jiu)结果(guo)表明(ming),在较(jiao)高的放(fang)电(dian)功(gong)率(lv)密度(du)下(xia),热(re)靶表面蒸发作(zuo)用(yong)十(shi)分明(ming)显,与(yu)完全冷却的(de)靶材(cai)相比(bi),放置(zhi)于(yu)隔(ge)热(re)钼坩(gan)埚中的(de)Cr靶(ba)和Ti靶(ba)的(de)沉(chen)积速(su)率分(fen)别能够(gou)提(ti)高(gao)20倍和5倍(bei)。


除(chu)了具有(you)较(jiao)高(gao)的(de)沉(chen)积速率外(wai),液(ye)态靶(ba)材(cai)磁控溅(jian)射过(guo)程(cheng)中(zhong)的(de)等(deng)离(li)子体(ti)密度与(yu)离(li)化(hua)率(lv)也非常高。较(jiao)高(gao)的(de)离(li)化(hua)率(lv)便(bian)于(yu)在(zai)溅(jian)射过程中调(diao)控(kong)涂(tu)层结构,例(li)如通(tong)过(guo)向衬(chen)底(di)施加(jia)偏(pian)压来提高金属(shu)离子(zi)向基(ji)底(di)方(fang)向(xiang)运(yun)动的通(tong)量与能量,制(zhi)备出(chu)力学性能较(jiao)好(hao)的涂层。
Tumarkin等[24]在使用(yong)液态(tai)Cu靶(ba)直(zhi)流(liu)磁控(kong)溅射(she)技术(shu)制备(bei)纯(chun)Cu涂层(ceng)时,分(fen)别向衬(chen)底(di)施(shi)加了(le)−50V、−100V、−300V、−400V的偏压(ya),沉积(ji)了(le)具有不同结合强(qiang)度(du)的涂(tu)层(ceng),沉(chen)积(ji)涂(tu)层的(de)截(jie)面(mian)形貌(mao)如(ru)图10所示。研(yan)究(jiu)发现,通(tong)过(guo)提高衬底(di)负(fu)偏压,可以将(jiang)涂层(ceng)与衬底的(de)结合力大幅提高(衬(chen)底(di)偏压为−400V时,涂层受力达25N时仍未(wei)观(guan)察(cha)到(dao)明(ming)显剥(bo)落(luo)痕迹(ji))。

2、液态(tai)靶材磁控溅射(she)技(ji)术在(zai)涂(tu)层制备中(zhong)的(de)应用(yong)
在传统的固态(tai)靶(ba)材(cai)磁(ci)控溅射(she)过(guo)程(cheng)中(zhong),大(da)都需要向(xiang)真(zhen)空室(shi)内(nei)通(tong)入(ru)工作气(qi)体(ti),并电(dian)离(li)工(gong)作气(qi)体中的原(yuan)子(zi)用(yong)以维(wei)持等(deng)离子体(ti)放电。真空室中(zhong)工作气体(ti)的压(ya)力(li)的(de)范围(wei)一般为0.1~1Pa[32],溅(jian)射出的靶(ba)材原(yuan)子(zi)与(yu)真(zhen)空室内的工(gong)作气(qi)体原子发(fa)生(sheng)碰(peng)撞(zhuang),降低了靶材原(yuan)子(zi)沉积到(dao)基(ji)底上的能(neng)量,并(bing)导(dao)致(zhi)涂层沉(chen)积速(su)率(lv)的降(jiang)低。根据前文(wen)所述(shu),液态(tai)靶(ba)材在(zai)溅(jian)射过程(cheng)中(zhong)伴(ban)随(sui)着靶(ba)材原子的(de)大(da)量(liang)蒸(zheng)发,可(ke)以(yi)实现无气自(zi)溅射模式(shi)。
许(xu)多(duo)研(yan)究者(zhe)认为,这(zhe)种模式(shi)将(jiang)为金属涂层(ceng)的(de)制(zhi)备(bei)带(dai)来许(xu)多优(you)势(shi)[33-37]。目(mu)前利(li)用(yong)液(ye)态(tai)靶(ba)材无气自(zi)溅(jian)射模在Cu、Cr等(deng)材料(liao)上。
2.1 Cu涂(tu)层
Bleykher等(deng)[38]采用(yong)液态(tai)Cu靶磁控(kong)溅(jian)射制备Cu涂(tu)层,制备(bei)出(chu)的Cu涂层相比于溅(jian)射(she)固态Cu靶,结(jie)构(gou)没(mei)有明显差(cha)异(yi),但沉(chen)积速率高达(da)140nm/s(溅射固(gu)态(tai)Cu靶(ba)沉(chen)积(ji)速率(lv)仅(jin)为(wei)4nm/s),且(qie)表(biao)面(mian)更(geng)光(guang)滑(hua),平(ping)均粗糙度(du)更低,AFM结(jie)果如(ru)图11所(suo)示,由于蒸(zheng)发而(er)显著(zhu)增加(jia)的(de)靶(ba)材(cai)粒子(zi)密(mi)度(du)对(dui)涂(tu)层表(biao)面(mian)形态(tai)产生了影(ying)响。Bleykher等[39]还(hai)研(yan)究了(le)不(bu)同坩(gan)埚材(cai)质对(dui)Cu涂(tu)层沉积的(de)影响(xiang),SEM下Cu涂层的(de)形(xing)貌(mao)如(ru)图(tu)12所示(shi)。图(tu)12中(zhong),液(ye)态(tai)Cu靶置于石墨(mo)坩(gan)埚(guo)中(zhong)沉(chen)积得到(dao)的(de)涂层(ceng)(a)表(biao)面形(xing)貌与(yu)(b)截面(mian)形貌(mao);液态(tai)Cu靶置于(yu)钼(mu)坩埚中(zhong)沉积得(de)到的涂层(c)表面形貌(mao)与(yu)(d)截(jie)面形貌(mao);相(xiang)比于(yu)石墨(mo)坩埚(guo),使用钼(mu)坩埚沉(chen)积(ji)得到(dao)的(de)Cu涂层表面(mian)颗(ke)粒更(geng)加细(xi)小均(jun)匀,涂层(ceng)也(ye)较为致密,而使(shi)用石(shi)墨(mo)坩(gan)埚(guo)沉(chen)积(ji)的(de)Cu涂(tu)层表(biao)面颗(ke)粒(li)较为(wei)粗大,孔(kong)隙(xi)和缺陷较多,具有(you)明显(xian)的柱(zhu)状结构(gou)。作(zuo)者(zhe)认为(wei)钼坩(gan)埚在溅射过(guo)程中(zhong)具(ju)有(you)更高通量的(de)热(re)辐射(she),使(shi)得(de)基体(ti)温(wen)度(du)升高,表(biao)面原(yuan)子(zi)流动性增(zeng)强(qiang),形成(cheng)的涂(tu)层(ceng)更(geng)为致(zhi)密(mi)。

2.2 Cr涂(tu)层(ceng)
Sidelev等(deng)[40]通过(guo)采(cai)用(yong)强制(zhi)冷却(que)的(de)固(gu)态(tai)Cr靶(ba)和(he)热Cr靶的(de)磁控溅(jian)射(she)技术制备了Cr涂层(ceng)。研究(jiu)结果(guo)表明,在放(fang)电功(gong)率密(mi)度相同的(de)条件下(xia),热靶的(de)沉积(ji)速率(lv)比固态靶(ba)高出1.5~2倍,并(bing)且涂(tu)层的(de)结(jie)合力明(ming)显优(you)于固(gu)态(tai)靶(ba)沉(chen)积(ji)的(de)涂(tu)层(ceng),划痕实(shi)验结果如图13所示。

然而,热(re)靶沉(chen)积(ji)的(de)涂(tu)层(ceng)硬度相对(dui)较低(di),约比(bi)固态(tai)靶(ba)沉(chen)积的(de)涂(tu)层低(di)9%(固(gu)态靶12GPa降低(di)为热靶的11GPa)。作者认为主(zhu)要是(shi)由(you)于(yu)热靶在沉(chen)积(ji)过程中蒸(zheng)发的大(da)量(liang)Cr原子(zi)在基(ji)体上产(chan)生了热流,导致了(le)硬度的降低(di)并改(gai)善了结合力(li)。
3、结语与(yu)展(zhan)望(wang)
本文综述了(le)近(jin)年来(lai)液(ye)态(tai)靶材磁(ci)控(kong)溅(jian)射技(ji)术(MLT)的(de)研(yan)究进(jin)展,重(zhong)点(dian)探(tan)讨了(le)MLT放(fang)电(dian)过程中(zhong)的放电特(te)性及等(deng)离(li)子(zi)体(ti)特(te)性(xing),通(tong)过(guo)对(dui)比(bi)MLT与(yu)传(chuan)统(tong)固(gu)态(tai)靶(ba)材磁控(kong)溅(jian)射(she)过(guo)程(cheng)的(de)技术特(te)点,认(ren)为(wei)MLT技(ji)术(shu)将磁控(kong)溅射(she)和(he)蒸镀(du)两种技术的(de)优点进行了融合,从而(er)实现(xian)了(le)极高(gao)的能量利用(yong)效率(lv),并大幅(fu)提高了磁(ci)控(kong)溅(jian)射(she)涂层制(zhi)备(bei)过程(cheng)中的(de)沉(chen)积速率,以极高的速(su)率沉积(ji)了(le)如Cu、Cr等(deng)材质(zhi)的纯金属(shu)涂层。
但(dan)与传统(tong)固态靶磁控溅(jian)射相比,液态靶材放(fang)电(dian)等(deng)离子体中(zhong)由(you)蒸发而产(chan)生(sheng)的原子(zi)数量(liang)较多,其动(dong)能(neng)相(xiang)对(dui)较低(di),因(yin)此存在着(zhe)离(li)化(hua)率损失(shi)与涂层(ceng)力学性(xing)能(neng)下(xia)降(jiang)的问题(ti),这也是(shi)制约(yue)MLT技(ji)术发展的重(zhong)要(yao)因(yin)素(su)。另外(wai),在(zai)溅(jian)射(she)过程中液(ye)态(tai)靶(ba)材(cai)表(biao)面(mian)温(wen)度(du)较高(gao),也(ye)会(hui)向衬底辐射大(da)量热(re)量导(dao)致(zhi)衬(chen)底升(sheng)温,因(yin)此无(wu)法使(shi)用MLT技术(shu)在对温(wen)度(du)敏(min)感(gan)的(de)不(bu)耐(nai)温(wen)衬(chen)底(di)上(shang)沉(chen)积(ji)涂(tu)层(ceng)。由(you)于MLT技术(shu)的发(fa)展才(cai)刚(gang)刚(gang)起(qi)步(bu),现有研(yan)究的主要侧重点在于(yu)研(yan)究液(ye)态靶材(cai)放(fang)电(dian)特性(xing)与提(ti)高涂(tu)层沉(chen)积(ji)速(su)率(lv),对上述(shu)两个问(wen)题研究(jiu)较(jiao)少(shao)。因(yin)此如何在(zai)保证高沉积速(su)率(lv)的(de)同(tong)时(shi)进一步提高放电等离(li)子(zi)体(ti)中粒(li)子(zi)离化(hua)率,如(ru)何有效利用(yong)高(gao)温(wen)下(xia)靶材表(biao)面发射的热(re)电子,以及(ji)如(ru)何进一(yi)步提高涂(tu)层的力学(xue)性(xing)能(neng),具(ju)有(you)重大的研(yan)究价(jia)值(zhi)和深(shen)远(yuan)的(de)研究前景(jing)。
参考(kao)文献(xian):
[1]LI C L,WANG L G, SHANG L L, et al. Mechanical andhigh-temperature tribological properties of CrAlN/TiSiNmultilayer coating deposited by PVD[J]. Ceramics International,2021,47(20):29285−29294.
[2]PARK G D,YANG J H,LEE K H,et al. Ultra-high corrosion resistance of Al-Mg-Si film on steel sheet formed byPVD Mg coating and heat treatment[J]. Corrosion Science,2021,192:109829.
[3]KONG D J,FU Y Z,WU Y Z,et al. Interfacial characteristics and tribological properties of TiN coatings prepared by PVD method[J]. Journal of Vacuum Science and technology,2012,32:1078−1083.
[4] ENGELHART W,DREHER W,EIBL O,et al. Deposition ofalumina thin film by dual magnetron sputtering:Is it γ-Al2O3?[J]. Acta Materialia,2011,59(20):7757−7767.
[5]REDDY I N,REDDY V R,SRIDHARA N,et al. Optical and microstructural characterisations of pulsed rf magnetron sputtered alumina thin film[J]. Journal of Materials Science &
Technology,2013,29(10):929−936.
[6]REDDY I N,REDDY V R,SRIDHARA N,et al. Pulsed rf magnetron sputtered alumina thin films[J]. Ceramics International,2014,40(7):9571−9582.
[7]OLSSON M K,MACAK K,GRAF W. Reactive d.c. magnetron sputter deposited Al2O3 films:large-area coatings for industrial applications[J]. Surface and Coatings Technology,
1999,122(2/3):202−207.
[8]LING G W,SHEN H Y,ZHOU F T. Cathode arc deposition technology and its development[J]. Vacuum,1996,1:1−12.
[9]MUSIL J. Recent advances in magnetron sputtering technology[J]. Surface and Coatings Technology,1998,100/101:280−286.
[10]BRAUER G,SZYSZKA B,VERGOHL M, et al. Magnetron sputtering-milestones of 30 years[J]. Vacuum, 2010,84(12):1354−1359.
[11]ANDERS A. Deposition rates of high power impulse magnetron sputtering: Physics and economics[J]. Journal of Vacuum Science & Technology A,2010,28(4):783-790.
[12]JIN Y Z,WU W,LI L. Effect of sputtering power on surface topography of dc magnetron sputtered Ti thin films observed by AFM[J]. Applied Surface Science,2009,255(8):4673−4679.
[13]EDLOU S M,SMAJKIEWICZ A,AL-JUMAILY G A. Optical properties and environmental stability of oxide coatings deposited by reactive sputtering[J]. Applied Optics, 1993,32(28):5601−5605.
[14]ZHUKOV V V,KRIVOBOKOV V P,YANIN S N. Sputtering of the magnetron diode target in the presence of an external ion beam[J]. Technical Physics,2006,51:453−458.
[15]PICHUGIN V F,SURMENEV R A,SHESTERIKOV E V,et al. The preparation of calcium phosphate coatings on titanium and nickel–titanium by rf-magnetron-sputtered deposition:composition,structure and micromechanical properties[J]. Surface and Coatings Technology, 2008, 202(16):3913−3920.
[16]MUSIL J, RAJSKY A, BELL A J, et al. High-rate magnetron sputtering[J]. Journal of Vacuum Science and Technology A,1996,14:2187–2191.
[17]MERCS D,FERRY F,BILLARD A. Hot target sputtering:a new way for high-rate deposition of stoichiometric ceramic films[J]. Surface and Coatings Technology, 2006,201(6):2276−2281.
[18]VLCEK J,ZUSTIN B,REZEK J,et al. Pulsed magnetron sputtering of metallic films using a hot target[C]//52nd Annual Technical Conference Proceedings, Santa Clara, CA:Society of Vacuum Coaters,2009:219-223.
[19]MUSIL J,SATAVA V,BAROCH P. High-rate reactive deposition of transparent SiO2 films containing low amount of Zr from molten magnetron target[J]. Thin Solid Films,2010,519(2):775−777.
[20]TESAR J,MARTAN J,REZEK J. On surface temperatures during high power pulsed magnetron sputtering using a hot target[J]. Surface and Coatings Technology,2011,206(6):1155−1159.
[21]TUMARKIN A V,ZIBROV M,KHODACHENKO G V,et al.High-rate deposition of silicon films in a magnetron discharge with liquid target[J]. Journal of Physics Conference Series,2016,768(1):012015.
[22]TUMARKIN A V,ZIBROV M,KHODACHENKO G V ,et al. Technological features of the thick tin film deposition by with magnetron sputtering form liquid-phase target[J]. Key Engineering Materials,2018,781:8-13.
[23]DANILIN B S,KAKURIN M V,MINAYCHEV V E,et al.Deposition of metal coatings by magnetron sputtering from liquid target[J]. Elektron Tekhnol,1978,2(72):84−87.
[24]TUMARKIN A V,KAZIEV A V,KOLODKO D V,et al. Deposition of copper coatings in a magnetron with liquid target[J]. Physics of Atomic Nuclei, 2015, 78(14): 1674−1676.
[25]SHAPOVALOV V I,AHMEDOV H,KOZIN A A, et al.Simulation of the effect of argon pressure on thermal processes in the sputtering unit of a magnetron with a hot target[J]. Vacuum,2021,192:110421.
[26]SHAPOVALOV V I,ZAVYALOV A V,MELESHKO A A.Current-voltage characteristics of a magnetron with a hot titanium target in chemically active environments[J]. Surface and Coatings Technology,2021,417:127189.
[27]ZHUKOV V V,KOSMIN D M,KRIVOBOKOV V P,et al.Magnetron discharge in the diode with a liquid-metal target[R]. Tomsk, Russia: Nuclear Physics Institute at Tomsk Polytechnic University,2004.
[28] KOLODKO D V,LISENKOV V Y,et al. Cu metallization of Al2O3 ceramic by coating deposition from cooled-andhot-target magnetrons[J]. Coatings,2023,13(2):238.
[29]KAZIEV A V,TUMARKINA A V,LEONOVA K A,et al.Discharge parameters and plasma characterization in a dc magnetron with liquid Cu target[J]. Vacuum, 2018, 156:
48−54.
[30]TUMARKIN A V,KAZIEV A V,KHARKOV M M,et al.High-current impulse magnetron discharge with liquid target[J]. Surface and Coatings Technology,2016,293:42−47.
[31]BLEYKHER G A,KRIVOBOKOV V P,YURJEVA A V,et al. Energy and substance transfer in magnetron sputtering systems with liquid-phase target[J]. Vacuum, 2016, 124:11−17.
[32]MUSSCHOOT J, HAEMERS J. Qualitative model of the magnetron discharge[J]. Vacuum,2009,84(4):488−493.
[33]MUSIL J. Low-pressure magnetron sputtering[J]. Vacuum,1998,50(3/4):363−372.
[34]POSADOWSKI W M. Self-sustained magnetron co-sputtering of Cu and Ni[J]. Thin Solid Films,2004,459(1/2):258−261.
[35]ANDERSSON J,ANDERS A. Gasless sputtering:opportunities for ultraclean metallization, coatings in space, and propulsion[J]. Applied Physics Letters,2008,92:221503.
[36]WIATROWSKI A,POSADOWSKI W M,JOZWIAK G,et al.Standard and self-sustained magnetron sputtering deposited Cu films investigated by means of AFM and XRD[J]. Microelectronics Reliability,2011,51(7):1203−1206.
[37]WIATROWSKI A,POSADOWSKI W M,RADZIMSKI Z J.Pulsed dc self-sustained magnetron sputtering[J]. Journal of Vacuum Science & Technology A,2008,26:1277-1281.
[38]BLEYKHER G A,YURYEVA A V,SHABUNIN A S,et al.The properties of Cu films deposited by high rate magnetron sputtering from a liquid target[J]. Vacuum,2019,169:108914.
[39]BLEYKHER G A,BORDULEV A O,YURYEVA A V,et al.Features of copper coatings growth at high-rate deposition using magnetron sputtering systems with a liquid metal target[J]. Surface and Coatings Technology,2017,324:111−120.
[40]SIDELEV D V,BLEYKHER G A,KRIVOBOKOV V P,et al.High-rate magnetron sputtering with hot target[J]. Surface and Coatings Technology,2016,308:168−173.
相(xiang)关(guan)链接