热(re)门(men)搜(sou)索词: 钛(tai)靶 铬(ge)靶 锆(gao)靶 镍靶(ba) 钛(tai)丝(si) 钛锻(duan)件(jian) 钛法(fa)兰(lan) 钛(tai)块(kuai) 钛加(jia)工(gong)件
引(yin)言(yan)
我国(guo)国防(fang)军工(gong)、农(nong)业(ye)、医疗(liao)等领域(yu)的(de)迅猛发(fa)展 对(dui)材(cai)料表面耐(nai)磨防(fang)护(hu)性(xing)能的(de)要求(qiu)日益严苛(ke)。物理 气(qi)相(xiang)沉(chen)积(ji)(Physical Vapor Deposition,PVD)技术是(shi) 材料(liao)表(biao)面改(gai)性的(de)常用(yong)方(fang)法,主(zhu)要(yao)包括真(zhen)空蒸(zheng)镀、溅(jian) 射沉积和(he)离子(zi)镀(du)沉(chen)积(ji)等技(ji)术(shu),PVD 具(ju)有(you)工(gong)艺简单(dan)、节能(neng)环保(bao)、成(cheng)膜(mo)均匀(yun)致(zhi)密(mi)以及(ji)可控性强等(deng)特点,已(yi) 广(guang)泛应(ying)用于多(duo)个领域(yu)[1-2]。磁控溅射技(ji)术是(shi)一(yi)种(zhong)通(tong) 过气体离(li)子轰击靶(ba)材(cai),使靶(ba)材(cai)原子或分子(zi)沉(chen)积(ji)在基(ji) 材上(shang)形成(cheng)涂层的(de)技术。传(chuan)统磁(ci)控(kong)溅(jian)射(she)技(ji)术在(zai)高(gao)端(duan) 应用中(zhong)存(cun)在等(deng)离子(zi)体密度低(di)、离(li)化(hua)率(lv)不足等(deng)问题(ti),限(xian)制(zhi)了(le)涂(tu)层性(xing)能的提升[3]。
1999 年(nian),瑞(rui)典林(lin)雪平大(da)学(xue) Kouznetsov 等(deng)[4] 针对 传(chuan)统磁控(kong)溅(jian)射(she)技(ji)术(shu)靶(ba)材(cai)功(gong)率(lv)密度(du)受(shou)限(xian)问题(靶(ba)与(yu) 等离(li)子(zi)体相互作(zuo)用引(yin)起显著(zhu)温升(sheng)),首次(ci)提出(chu)了高 功率脉(mai)冲磁控溅(jian)射(HiPIMS 或(huo) High Power PulsedMagnetron Sputtering,HPPMS)技(ji)术。他(ta)们(men)将(jiang)脉冲(chong) 电源(yuan)与磁(ci)控(kong)溅(jian)射(she) Cu 阴(yin)极叠(die)加(jia),不(bu)仅实(shi)现(xian)了(le)金(jin)属离 化(hua)率(lv)的(de)显(xian)著(zhu)提(ti)升(sheng)(约(yue) 70%),优(you)化了靶(ba)材利(li)用(yong)率,进 而改(gai)善了(le)涂(tu)层厚(hou)度均(jun)匀(yun)性。随后,该(gai)团队报(bao)道(dao),当 以(yi)金属离(li)子为主时,即(ji)使在距(ju)离溅射源 6~10 cm 处(chu) 也(ye)能(neng)检测到极(ji)高的(de)等(deng)离(li)子体密度(>1012 cm−3)[5]。 至(zhi)2005 年(nian),HiPIMS 技术取(qu)得了显(xian)著(zhu)的(de)发(fa)展(zhan),能够 产生 1019 m−3 量级(ji)的(de)高等(deng)离(li)子体(ti)密度[6]。2011 年(nian),Anders[7] 将(jiang) HiPIMS 定义(yi)为一(yi)种峰值功率(lv)通常超(chao)过 时(shi)间平均(jun)功(gong)率两(liang)个数量级的(de)脉(mai)冲溅射技(ji)术(shu)。他们(men) 发(fa)现(xian),靶面(mian)的平(ping)均峰(feng)值功率(lv)密(mi)度(du)可以(yi)达到(dao)甚至超(chao) 过(guo) 107 W/m2,涂(tu)层性能可(ke)以(yi)进(jin)一(yi)步提升(sheng)。2010 年,日(ri)本学(xue)者Nakano 等(deng)[8] 基于 HiPIMS 装(zhuang)置(zhi),通过在阴 极(ji)上施(shi)加极(ji)性(xing)相(xiang)反的(de)脉(mai)冲(chong)来(lai)研(yan)究其(qi)对等离子(zi)体 稳定(ding)性(xing)的影(ying)响,发(fa)现所施加偏压(ya)不(bu)足(zu)以(yi)维(wei)持放电,反 而(er)阻碍(ai)了(le)等(deng)离子体的演化。随(sui)后(hou),多个(ge)研究(jiu)者(zhe)提(ti)出 双(shuang)极高功率脉冲磁(ci)控溅(jian)射(she)(Bipolar High Power Impulse Magnetron Sputtering,BP-HiPIMS或(huo) B-HiPIMS)技(ji)术(shu),通过在传统(tong) HiPIMS 的负脉冲上(shang)叠加(jia)正脉冲(chong),可(ke)以增(zeng)加(jia)溅(jian)射(she)金属(shu)离(li)子的运(yun)动(dong)速度,并(bing)增强(qiang)离子(zi)对(dui) 电(dian)介(jie)质(zhi)涂层(ceng)的(de)轰(hong)击,从而解决沉(chen)积(ji)绝缘涂层(ceng)过(guo)程中 难以(yi)施(shi)加偏(pian)压及(ji)离化率(lv)弱(ruo)化的(de)技(ji)术(shu)难题[9-10]。哈(ha)尔 滨工业大(da)学(xue)吴厚朴(pu)等(deng)[11] 提(ti)出两(liang)段(duan)式双(shuang)极性(xing)脉冲高(gao) 功(gong)率脉(mai)冲磁(ci)控(kong)溅(jian)射(she)(Double Bipolar Pulse High Power ImpulseMagnetron Sputtering,DBP-HiPIMS)技术,整(zheng) 个(ge)脉(mai)冲周(zhou)期内靶(ba)面(mian)附近等(deng)离(li)子体密度(du)维(wei)持(chi)在较(jiao)高(gao) 水平,该(gai)模(mo)式下平均电流(liu)相较(jiao)于传统(tong) BP-HiPIMS模式(shi)提(ti)升了(le)47%。
HiPIMS 技术(shu)能(neng)够产生高密度等离子(zi)体,显(xian)著(zhu) 提高靶材原子(zi)离(li)化率和(he)等(deng)离(li)子体(ti)密度(du),制备(bei)出具有 较(jiao)高(gao)性能的涂(tu)层[12-14]。然而(er),沉积(ji)速率受限(xian)成为(wei)该(gai) 技术(shu)发展(zhan)的(de)主(zhu)要瓶(ping)颈;膜(mo)层(ceng)内应(ying)力水(shui)平也(ye)需(xu)进(jin)一步 提(ti)高。本文(wen)主(zhu)要(yao)综(zong)述了高功率脉冲(chong)磁控溅(jian)射(she)技(ji)术 的(de)改进和复合技术发展,包(bao)括 HiPIMS 的(de)波形叠(die)加(jia)、同步偏(pian)压和(he)外部辅助(zhu)装置增(zeng)强放电技(ji)术,及(ji)与射(she)频、直流和(he)电弧等 PVD 技术的(de)复合(he)技术(shu),并(bing)对相关技(ji) 术 应用进行(xing)了(le)简(jian)要阐(chan)述。
1、HiPIMS 技术的优(you)势(shi)与局(ju)限(xian)性(xing)
1.1 HiPIMS 技(ji)术的(de)核心(xin)优势(shi)
与(yu)直流磁(ci)控溅(jian)射相比(bi),HiPIMS 技(ji)术因其(qi)高离(li) 化率而(er)具有(you)更高的(de)能量(liang)。Ferrec 等[15] 采(cai)用 DCMS和(he) HiPIMS技(ji)术制(zhi)备(bei)了 Cr 涂(tu)层(ceng),并(bing)对两种(zhong)技术(shu)下(xia)Cr+、Cr2+和 Ar+的(de)离(li)子(zi)能(neng)量(liang)分(fen)布函数进(jin)行(xing)分(fen)析,分析 结果(guo)如图 1所示(shi)。在 DCMS 放电(dian)中(zhong),大部分离(li)子 被(bei)热化而(er)集中于(yu)较低(di)的(de)能量(liang)区(qu)间(jian),而(er) HiPIMS 中(zhong)的(de) 离子拥(yong)有(you)更高的(de)能量(liang),其(qi)中 Cr+离子(zi)的分(fen)布函数达 到 60 eV 左(zuo)右,远高(gao)于(yu) DCMS 中约(yue) 30 eV 的(de)水平(ping)。

HiPIMS 技术(shu)是通过(guo)高能离子(zi)轰(hong)击效应,提高 电离通量(liang)和(he)原子(zi)迁(qian)移率(lv),使(shi)沉(chen)积(ji)的涂(tu)层组织致密, 表(biao)面粗糙度(du)降(jiang)低(di),性能(neng)得(de)到明显改善(shan)。Bobzin 等[16]对比(bi)了采用直(zhi)流(liu)磁控溅(jian)射(Direct current magnetronsputtering, DCMS)和 HiPIMS 技(ji) 术(shu) 沉 积 (Cr, Al)N涂(tu)层的组织(zhi)结(jie)构(gou)和性(xing)能(neng),图(tu) 2 为两种(zhong)技术沉(chen)积(ji)的(de) 涂(tu)层截面形(xing)貌(mao)(a)(c)和(he)表(biao)面(mian)形(xing)貌(b)(d),HiPIMS-(Cr,Al)N 涂(tu)层更(geng)光滑致密,并抑(yi)制了柱(zhu)状晶生(sheng)长(zhang),硬(ying)度和(he)弹性(xing)模量比(bi) DCMS-(Cr,Al)N 涂(tu)层高两倍多,这(zhe)可(ke)归因(yin)于(yu) HiPIMS 等离(li)子(zi)体(ti)电离(li)度(du)的显著增加(jia)。

Ying 等[17]研(yan) 究 了(le) HiPIMS 与(yu) 射(she) 频(pin) 磁(ci) 控(kong) 溅(jian) 射(RFMS)技(ji)术在 WS2 涂层制(zhi)备上的(de)差(cha)异(yi),两种(zhong)制(zhi)备工(gong)艺(yi)下(xia)的涂层表面(mian)形貌(mao)如(ru)图 3 所(suo)示(shi),RF-WS2 涂(tu)层 表(biao)面(mian)呈现(xian)出(chu)不均匀的蠕虫状(zhuang)结(jie)构(gou),而(er) HiPIMS-WS2涂层则(ze)为鳞片状颗粒形(xing)态,涂层表(biao)面(mian)平整(zheng)光(guang)滑,结 构致密(mi)。Wang 等[18] 采(cai)用(yong) HiPIMS 与(yu)电(dian)弧(hu)离(li)子镀(du)(Arc IonPlating,AIP) 技(ji)术(shu)分(fen)别制备(bei)了(le) Cr 涂(tu)层,研 究发现 HiPIMS-Cr 涂(tu)层(ceng)结构(gou)紧凑(cou),表面(mian)光(guang)滑,几乎 无(wu)宏(hong)观(guan)颗粒(li)缺(que)陷(xian),而(er) AIP-Cr 涂(tu)层表面则(ze)因(yin)弧斑(ban)蒸 发效应而(er)布满较(jiao)大的(de)宏(hong)观颗(ke)粒。这进一步(bu)表明(ming)HiPIMS 技术(shu)在(zai)调控涂(tu)层微(wei)观(guan)结构(gou)方面的优(you)越(yue)性(xing)。Reck 等(deng)[19] 通过(guo)不同(tong) PVD 沉(chen)积(ji)技术(shu)在 SiO2 和聚苯(ben)乙(yi) 烯(xi)基体(ti)上沉积(ji) Ag涂层,结果(guo)表明(ming),使用(yong) BP-HiPIMS技术对金属(shu)离子(zi)进(jin)一(yi)步加速(su)所(suo)沉积的涂层(ceng)比 DCMS技(ji)术(shu)展现出更(geng)高(gao)的簇(cu)密度,两(liang)种工(gong)艺(yi)下的(de)涂层形(xing)态 相似(shi),但(dan) BP-HiPIMS 工(gong)艺(yi)中(zhong)涂(tu)层结(jie)构尺(chi)寸(cun)(61 nm± 9 nm)比 DCMS 工艺(76nm±8 nm)更小。Cho 等(deng)[20]采用 BP-HiPIMS 和 DCMS 技术在 304 不锈(xiu)钢(gang)表(biao)面 制备了(le) α 相钽(tan)涂层(ceng),图4 为用(yong)不(bu)同技术(shu)所(suo)制(zhi)备(bei)涂(tu)层(ceng) 的截(jie)面形貌(mao)对比,使(shi)用双(shuang)极(ji) HiPIMS技术(shu)形(xing)成(cheng)纳(na)米晶涂(tu)层,高(gao)能(neng)钽(tan)离子(zi)轰(hong)击(ji)导(dao)致(zhi)柱(zhu)状(zhuang)晶(jing)生(sheng)长(zhang)被打断是(shi) 纳(na)米(mi)晶(jing)结(jie)构形成的(de)原因(yin)。


HiPIMS 技(ji)术能(neng)够(gou)使(shi)等离(li)子体(ti)高(gao)度(du)离化(hua)且无(wu)大(da) 颗(ke)粒,在(zai)高偏压电场(chang)作用(yong)下(xia)高(gao)密度离子束(shu)流(liu)轰(hong)击(ji)基(ji) 体表(biao)面(mian),使(shi)离子注入至基体界面(mian),也(ye)可促(cu)进(jin)涂层(ceng)局(ju) 部(bu)外(wai)延生(sheng)长(zhang),增强(qiang)膜(mo)/基(ji)结(jie)合(he)力等(deng)性能。Alhafian 等[21]对比(bi)了阴(yin)极(ji)电(dian)弧(hu)蒸(zheng)发(Cathodic Arc Evaporation,CAE)与 HiPIMS 技术制备(bei)的 TiAlN 涂(tu)层,研究发(fa)现 HiPIMS诱(you)导涂(tu)层晶体(ti)结构(gou)择(ze)优(you)取(qu)向(xiang)由(you)(200)向(xiang)(111)转变,这一(yi)转(zhuan)变(bian)归(gui)因于(yu) HiPIMS 脉(mai)冲之间的弛(chi)豫(yu)时(shi) 间效应(ying)。另外,HiPIMS 技术制备涂(tu)层(ceng)的硬度与应(ying)力 水平(ping)不(bu)一(yi)定(ding)相关(guan),因(yin)而(er)可通(tong)过调(diao)整沉(chen)积参(can)数(shu)来调控(kong) 杨氏模(mo)量
,进(jin)而(er)优(you)化 H/E 和 H3/E2 比(bi)值来提(ti)升(sheng)涂(tu)层耐(nai) 磨(mo)性。Kiryukhantsev-korneev 等(deng)[22] 使(shi)用(yong)单一(yi) DCMS和HiPIMS 技(ji)术在相(xiang)同(tong)功率下(xia)制(zhi)备(bei)了(MoTaNbZrHf)- Si-B 涂(tu)层,结果(guo)表(biao)明 HiPIMS 所(suo)制(zhi)备(bei)涂(tu)层划痕边(bian)缘 处(chu)的涂(tu)层(ceng)剥(bo)落面(mian)积显著(zhu)减小,且压(ya)头穿透(tou)深(shen)度达(da) 到(dao) DCMS 涂(tu)层的(de)两(liang)倍(bei),此外,涂层(ceng)磨(mo)损率(lv)降(jiang)低(di)约 30%,循环(huan)冲(chong)击(ji)载荷(he)提(ti)高两(liang)倍。在 MAX 相涂(tu)层(ceng)制备领(ling) 域,Li 等(deng)[23] 使(shi)用(yong) HiPIMS 和(he) DCMS 技(ji)术(shu)分(fen)别(bie)在(zai) Ti6Al-4 V合(he)金(jin)基底上沉(chen)积 Ti-Al-C 涂(tu)层(ceng),由(you)于具(ju)有(you)高 动能(neng)的高离子(zi)化(hua)等(deng)离(li)子流,HiPIMS 沉(chen)积(ji)获得了(le)纳(na) 米晶 TiAlx 化(hua)合物(wu),并在(zai) 700 ℃ 退(tui)火后(hou)生成致(zhi)密平滑的(de) Ti3AlC2 相涂层,Ti3AlC2 相可(ke)以(yi)在 450 ℃ 早(zao)期 参(can)与结晶(jing),而(er)经(jing)退(tui)火(huo)的(de) DCMS 涂(tu)层仅(jin)生成(cheng) Ti2AlC相(xiang)。德(de)国赛利(Ceme Con)公司将基(ji)于(yu) HiPIMS 技术的(de)Ferro Con®Plus 工艺成功(gong)应用于 AlTiN 基(ji)高(gao)性(xing)能涂(tu) 层的商(shang)业(ye)化(hua)生产,该(gai)涂(tu)层展现出(chu)卓(zhuo)越(yue)的高温(wen)稳定性(xing),最大(da)服役(yi)温(wen)度达 1 100 ℃,车削(xue) Inconel 718 合(he)金(jin)时,加工 1 000 m 的切削(xue)距离(li)后,AlTiN 涂(tu)层刀(dao)具(ju)磨(mo)损 带(dai)宽(kuan)(140 μm)仅(jin)为标准 TiAlN 涂层刀(dao)具(ju)(280 μm)的 一半(ban),且经(jing)企(qi)业广泛应(ying)用(yong)验(yan)证,在不同(tong)应(ying)用领(ling)域(yu),该(gai)涂(tu)层的(de)刀(dao)具(ju)寿(shou)命(ming)均有显(xian)著(zhu)提升(提高(gao) 50%~80%)。HiPIMS 技术(shu)以(yi)其(qi)低占空(kong)比和(he)高(gao)功(gong)率脉(mai)冲特性,显著提升了靶材(cai)电离(li)度和等(deng)离(li)子(zi)体密度,增强了离(li) 子(zi)能量和通(tong)量(liang),不(bu)仅促进了涂(tu)层(ceng)表(biao)面粗(cu)糙(cao)度(du)的降低 和(he)结构(gou)的(de)致(zhi)密化,还提升了涂(tu)层(ceng)的硬(ying)度、耐磨性、耐(nai)腐蚀性(xing)和高温稳定(ding)性,为(wei)极(ji)端工(gong)况(kuang)下(xia)的材料(liao)保(bao)护 提 供(gong)了(le)有(you)力支(zhi)持。
1.2 HiPIMS 技(ji)术(shu)发(fa)展(zhan)的主要局限(xian)
尽(jin)管研(yan)究(jiu)者们(men)已(yi)经(jing)对 HiPIMS 技术(shu)进行了大 量(liang)研(yan)究(jiu),但(dan)在相同(tong)的(de)平均(jun)功(gong)率下,其(qi)沉(chen)积(ji)速(su)率(lv)仍(reng)然 比 DCMS 低(di),这(zhe)一(yi)直(zhi)是制约(yue)其(qi)广(guang)泛(fan)应(ying)用(yong)的核心(xin)挑(tiao) 战,并(bing)持(chi)续(xu)成为该领(ling)域研(yan)究(jiu)的焦点。目前的(de)研(yan)究(jiu)认(ren) 为(wei),造(zao)成上述(shu)问(wen)题(ti)的(de)主要(yao)原(yuan)因如(ru)下(xia):(1)回吸效应,溅(jian)射原(yuan)子(zi)的(de)高度(du)电离(li)显著(zhu)增(zeng)强(qiang)了离子(zi)对靶材(cai)的反 向吸(xi)引(yin)作(zuo)用,即(ji)“回吸”现象(xiang),直接(jie)导(dao)致(zhi)部(bu)分溅(jian)射粒 子(zi)不能(neng)有效脱离(li)靶面(mian)而参与(yu)沉积,从(cong)而(er)降(jiang)低(di)了沉(chen)积(ji) 速(su)率[24];(2)产率(lv)效(xiao)应(ying),溅(jian)射产率(lv)随(sui)离子(zi)能(neng)量的增加(jia) 呈非线性(xing)增长(zhang),限(xian)制(zhi)了(le)高(gao)能(neng)量脉冲(chong)下(xia)溅射效率(lv)的进(jin) 一(yi)步(bu)提升(sheng)[25];(3)物种(zhong)效(xiao)应,当(dang)工作气(qi)体离子(zi)被反向 吸引(yin)的靶(ba)材(cai)离(li)子(zi)所替(ti)代(dai)时(shi),溅射(she)过程(cheng)的(de)动力(li)学(xue)特(te)性(xing) 发(fa)生变化,影(ying)响了(le)溅射产率的稳(wen)定(ding)性,进而(er)降(jiang)低了 沉积(ji)速率(lv)[26];(4)输(shu)运效(xiao)应(ying),HiPIMS 等(deng)离子(zi)体(ti)中(zhong)强 烈的(de)轴(zhou)向(xiang)电位(wei)梯度(du)不仅(jin)阻碍了(le)因(yin)气体(ti)碰(peng)撞电(dian)离的(de) 低能金属离子传(chuan)输到(dao)基底,还(hai)导(dao)致他(ta)们(men)在(zai)径(jing)向传 输过(guo)程(cheng)中的侧向损失(shi),进(jin)一步降(jiang)低(di)了沉(chen)积效(xiao)率(lv)[27]; (5)气体稀薄效(xiao)应,在较(jiao)长(zhang)的 HiPIMS 脉冲(>50 μs)条(tiao)件下,气(qi)体(ti)稀薄(bao)现象(xiang)降(jiang)低(di)了(le)可(ke)用(yong)于溅(jian)射(she)的(de)有(you)效 离子密度,这(zhe)也是导(dao)致(zhi)沉积(ji)速率下(xia)降的一(yi)个(ge)重(zhong)要(yao)因 素[28]。Tiron 等[29] 进行了(le)系(xi)统性(xing)的对比(bi)研(yan)究,图 5 为(wei)DCMS 和(he) HiPIMS 在不(bu)同(tong)脉冲持续(xu)时(shi)间下(xia)的(de)涂层(ceng) 沉积(ji)速率。所(suo)有(you)脉(mai)冲时(shi)间下(xia)HiPIMS 技术的(de)沉(chen)积(ji) 速率均(jun)最(zui)低,在超(chao)短(duan) HiPIMS 脉冲(chong)期(qi)间(jian),由(you)于(yu)金(jin)属 粒子在高(gao)密(mi)度等离子(zi)体(ti)区域停留时(shi)间不(bu)足(zu)且离子 返回(hui)概率(lv)较(jiao)低(di),自(zi)溅射模式放电(dian)的(de)概(gai)率(lv)相(xiang)应(ying)降(jiang)低(di),导致(zhi)沉(chen)积(ji)速(su)率相(xiang)对较(jiao)高(gao)。自(zi)溅射是 HiPIMS的一(yi)个(ge)基(ji)本特征(zheng)[7],其机制(如图(tu) 6 所(suo)示(shi))与依(yi)赖气体(ti) Ar 离(li) 子(zi)溅射(she)的传(chuan)统磁控溅射不(bu)同,HiPIMS 主(zhu)要(yao)依赖靶 材自(zi)身返回的离子(zi)进(jin)行溅(jian)射,这一过(guo)程(cheng)高度(du)依(yi)赖(lai)于 电(dian)离效(xiao)率[7]。


HiPIMS 技术的高(gao)能(neng)量离子(zi)注入会导致所沉积(ji) 涂(tu)层(ceng)的(de)残(can)余(yu)应力(li)增(zeng)加。Tillmann 等[30] 采用不同 工 艺 沉(chen)积(ji)了 AlCrN 和(he) AlCrVYN 涂(tu) 层(ceng) , 研(yan) 究 发 现DCMS 样(yang)品(pin)的宏(hong)观(guan)和(he)微(wei)观(guan)残余(yu)应(ying)力(li)均(jun)明(ming)显低于使 用 HiPIMS工艺(yi)的样(yang)品(pin),这归(gui)因于 HiPIMS 沉积过(guo) 程(cheng)中产(chan)生(sheng)的(de)高能(neng)离子在(zai)沉积过(guo)程(cheng)中(zhong)加(jia)速(su)了(le)原子(zi)间(jian) 的碰(peng)撞与(yu)重组(zu),并(bing)促(cu)进了晶(jing)格缺陷(如(ru)空(kong)位(wei)、位(wei)错 等)的形(xing)成(cheng),进而导(dao)致(zhi)了(le)残(can)余应力(li)的(de)累积。Patidar等[31] 采用不(bu)同工艺(yi)沉积(ji) AlN 涂层,并(bing)对涂(tu)层中(zhong)的 应力进(jin)行(xing)了分(fen)析(xi),图 7 为(wei)采(cai)用(yong)不(bu)同制备(bei)技(ji)术得到(dao)的AlN 涂层(ceng)中(zhong)的 Ar 离子(zi)掺杂(za)含量(liang)及(ji)应力值,所(suo)有用(yong)HiPIMS 制(zhi)备的涂层均展(zhan)现(xian)出比用(yong) DCMS 制备(bei)的涂(tu) 层(ceng)更高的应(ying)力(li)水平和(he) Ar 离子掺(can)杂(za)含(han)量,当引入(ru)基(ji)体 偏(pian)压(ya)时(shi),用 HiPIMS 沉(chen)积(ji)的涂(tu)层应力和(he) Ar 离(li)子掺(can)杂 含量均比(bi)偏压(ya)为 0 V 时有(you)进(jin)一步(bu)提(ti)高(gao)。Cemin 等[32]和 Yang 等[33] 也 报(bao) 道(dao) 了 类(lei) 似 结 果(guo) 。 Li 等(deng)[34] 采 用(yong)HiPIMS 技术(shu)沉积了 TiAlSiN 涂(tu)层(ceng),结果表明,在 0 V到−150 V 的偏(pian)压(ya)下,离(li)子(zi)轰(hong)击增强导致(zhi)涂层(ceng)择优 取向(xiang)从(200)向(220)转(zhuan)变,压(ya)应力从(cong)−0.5 GPa 增(zeng)加 到−1.7 GPa,硬度和韧性(xing)在(zai)−150 V 时(shi)偏压(ya)达(da)到(dao)最大 值(zhi) 37.5 GPa±0.6 GPa 和 H/E = 0.110;当(dang)偏(pian)压进一步 增(zeng) 加(jia) 到−200 V 时 , 压 应 力 进 一 步 增(zeng) 大 至 −3 GPa,过(guo)度(du)的(de)离(li)子轰击(ji)促使(shi)涂层择(ze)优(you)取(qu)向(xiang)转变为(wei)(200),涂(tu)层的硬(ying)度(du)、韧性(xing)和(he)结(jie)合强度也有明显(xian)降低(di)。Das 等[35] 采(cai) 用(yong) HiPIMS 技(ji) 术 沉(chen) 积(ji) TiAlSiN 涂(tu) 层 的 研(yan)究(jiu)进一步(bu)表明(ming),随着(zhe)脉冲频(pin)率(lv)的(de)增(zeng)加(jia),虽(sui)然沉积 速(su)率有(you)所(suo)提升,但(dan)涂层(ceng)表(biao)面(mian)粗糙(cao)度(du)也从 9.42 nm 增(zeng) 加(jia)至(zhi) 14.32 nm。

HiPIMS 技(ji)术虽(sui)然(ran)取(qu)得(de)了(le)显著的(de)进(jin)步(bu),但(dan)其较(jiao) 低的(de)沉积速率一直是限(xian)制(zhi)其(qi)广(guang)泛(fan)应用的(de)瓶颈(jing)。该(gai) 问题主(zhu)要(yao)归(gui)因于回吸效应使(shi)有效(xiao)溅射(she)粒(li)子(zi)减(jian)少,产(chan) 率(lv)效应(ying)限制了(le)高(gao)能(neng)量(liang)下(xia)的溅(jian)射效(xiao)率,物种(zhong)效应(ying)影响 了(le)溅射动(dong)力(li)学稳定(ding)性(xing),输运(yun)效(xiao)应(ying)阻碍(ai)了(le)离(li)子向基材 的有效(xiao)传(chuan)输,以及气(qi)体(ti)稀(xi)薄(bao)效应降低了(le)有(you)效(xiao)离(li)子密(mi) 度。此(ci)外(wai),HiPIMS的高(gao)能量(liang)离子(zi)注入使(shi)涂(tu)层中的 惰性(xing)气体(ti)原子(zi)含量增(zeng)加,导(dao)致残(can)余(yu)应力增(zeng)加(jia),影(ying)响 涂(tu)层(ceng)性(xing)能(neng)。HiPIMS 技(ji)术对(dui)等(deng)离子体气氛要求(qiu)较(jiao)高,容易(yi)受到多种因(yin)素的(de)影(ying)响而产(chan)生打弧现象,该(gai)现(xian)象(xiang) 不(bu)仅(jin)会影响沉(chen)积过程(cheng)的(de)稳定(ding)性和可靠性(xing),还(hai)可能(neng)对(dui) 设 备和靶材造成损害,增(zeng)加(jia)维(wei)护成本。
2、HiPIMS 技(ji)术(shu)发(fa)展(zhan)及复合(he)技术(shu)
基于(yu)上(shang)述(shu) HiPIMS 技(ji)术(shu)所存(cun)在(zai)的问题(ti),研究(jiu)者(zhe) 们已开展(zhan)较(jiao)多(duo)针对性(xing)研(yan)究,这(zhe)些(xie)研(yan)究(jiu)主(zhu)要聚焦(jiao)于(yu)HiPIMS 技术本身(shen)的发(fa)展(zhan)改进和(he)通(tong)过(guo)复合技术(shu)优化 两个方面(mian)。在 HiPIMS 技(ji)术(shu)的(de)直(zhi)接(jie)改进方面(mian),主(zhu)要(yao) 包括(kuo)采(cai)用波形叠(die)加(jia)、实(shi)施(shi)同(tong)步(bu)偏(pian)压(ya)技(ji)术(shu)及增加辅 助(zhu)设备(bei)等方法(fa);复合技术(shu)分为(wei)与磁控溅(jian)射(she)和电(dian)弧(hu)离(li) 子(zi)镀(du)技术(shu)的(de)结(jie)合应用(yong),其中 HiPIMS 技术(shu)与磁控(kong)溅 射技(ji)术(shu)复合(he)沉(chen)积(ji)包(bao)括与(yu)直流(liu)磁(ci)控溅(jian)射、射(she)频磁控(kong) 溅射(she)以(yi)及(ji)中(zhong)频磁控(kong)溅射(she)的(de)复合(he)。这(zhe)些(xie)改进(jin)不仅(jin)增(zeng) 强了(le) HiPIMS 的(de)放(fang)电(dian),还提(ti)高(gao)了(le)涂层(ceng)的沉(chen)积速(su)率(lv),改 善(shan)了涂层性能(neng)。
2.1 HiPIMS 技(ji)术(shu)的发展(zhan)改(gai)进(jin)
2.1.1 波(bo)形叠加(jia)技(ji)术
对于(yu) HiPIMS 技(ji)术的(de)低沉(chen)积(ji)速(su)率(lv)和(he)高残(can)余应(ying) 力,可以(yi)通(tong)过以(yi)下(xia)方式进行(xing)改善(shan):(1)放(fang)电(dian)脉(mai)冲(chong)参(can)数(shu) 调控(脉(mai)冲(chong)持续(xu)时(shi)间(jian)、重复频(pin)率(lv)、峰值电流(liu)等(deng)),较(jiao) 短(duan)的(de)脉(mai)冲(chong)时间(jian)能够(gou)有(you)效缓解(jie)自溅(jian)射(she)现(xian)象并抑(yi)制气 体稀(xi)薄(bao)效应[36]。另(ling)外(wai),将 HiPIMS 脉(mai)冲(chong)限(xian)制在(zai)非(fei)常短(duan) 的持续时间(jian)(<5 μs)内,能(neng)够(gou)显(xian)著提升(sheng)等(deng)离(li)子体(ti)的(de)电(dian) 离(li)度,有效控(kong)制(zhi)金属(shu)离(li)子(zi)的(de)反向吸引(yin)效应,提升(sheng)沉积 效(xiao)率[37]。(2)改(gai)变(bian)磁控(kong)管(guan)的磁场强(qiang)度或形态,能够(gou)直 接(jie)影响(xiang)等离子(zi)体鞘(qiao)层(ceng)的(de)特性,优(you)化离子(zi)传(chuan)输(shu)路(lu)径至 基(ji)底(di)的过(guo)程(cheng),进而提(ti)升(sheng)沉积(ji)速率(lv)和(he)涂层质量(liang)[38-39]。(3)以(yi)多脉(mai)冲(chong)模(mo)式叠加 HiPIMS,可(ke)以提(ti)升(sheng)溅射材料 的(de)电(dian)离(li)度(du)并抑制(zhi)金(jin)属离子(zi)的反向(xiang)吸(xi)引(yin)效(xiao)应(ying)[40]。通过脉(mai)冲来(lai)调(diao)控 HiPIMS 效(xiao)果较(jiao)为(wei)常见(jian),图(tu) 8展(zhan)示了(le)多种(zhong)脉冲(chong)模式的(de)实际应(ying)用(yong)案(an)例(li)[41]。包括(kuo)三(san)角 形(xing)脉(mai)冲(chong)[42](图(tu) 8(a))、矩(ju)形单(dan)脉冲[43](图 8(b))、脉(mai)冲(chong) 组(zu)内的(de)叠(die)加模(mo)式[44](图(tu) 8(c)),此(ci)类(lei)脉(mai)冲(chong)组也(ye)用(yong)于深 度振荡(dang)磁控(kong)溅射(Deep Oscillation Magnetron Sputtering,DOMS)[45]。图(tu)8(d)所(suo)示(shi)脉(mai)冲组中的(de)低(di)电流(liu)用 于放电的预(yu)电离,预电(dian)离和其(qi)后的 HiPIMS 脉(mai)冲都 可以由(you)短脉(mai)冲(chong)组(zu)组成,这也(ye)称为调制(zhi)脉冲(chong)磁控(kong)溅射(she)(Modulated Pulsed Magnetron Sputtering,MPPMS)[46]。 图(tu) 8(e)所示(shi)的(de)反(fan)向(xiang)电压(ya)叠(die)加应用模(mo)式是施加比(bi)负(fu) 溅(jian)射电压更(geng)低的(de)正(zheng)向电压(ya)[47-48]。利(li)用(yong)单(dan)个脉(mai)冲发(fa) 生器(qi)同时(shi)驱(qu)动两个磁控溅(jian)射(she)源(yuan)的(de)双(shuang)极(ji)操(cao)作(zuo)模式(shi)如(ru) 图 8(f)所(suo)示(shi)[49],这(zhe)些(xie)脉冲(chong)模式为(wei) HiPIMS 技(ji)术(shu)提供 了(le)全(quan)新的(de)研究(jiu)方向。通(tong)过将(jiang) HiPIMS技术叠加(jia)可 实现(xian)波(bo)形(xing)转(zhuan)变(bian),进而改(gai)善涂层沉积(ji)速率,多(duo)方(fang)面(mian)调 控(kong)涂(tu)层(ceng)残(can)余(yu)应力(li)及(ji)其他性(xing)能(neng),并(bing)提供(gong)良好(hao)的(de)等离子 体氛(fen)围(wei),有(you)利于(yu)持(chi)续稳(wen)定(ding)地起(qi)辉及放电。

2.1.2 同步(bu)偏压(ya)技术(shu)
HiPIMS 工(gong)作(zuo)期(qi)间(jian),气体(ti)离(li)子(zi)电离(li)与(yu)放(fang)电(dian)电流(liu) 同(tong)步发生(sheng),而在(zai)靶(ba)电(dian)流密(mi)度达(da)到(dao)较(jiao)高(gao)值(zhi)后金属离(li)子(zi) 才产生(sheng),在(zai) HiPIMS 脉冲(chong)的(de)后(hou)半部(bu)分(fen),放(fang)电主要(yao)以(yi) 金属离(li)子为(wei)主(zhu),气体(ti)稀薄效应和(he)离子(zi)化(hua)物(wu)质(zhi)的(de)质(zhi)量(liang) 差(cha)都(dou)可(ke)能(neng)导致(zhi)其到达基(ji)体的(de)时(shi)间(jian)不同,这(zhe)导(dao)致(zhi)气体(ti) 离子(zi)一(yi)般(ban)在(zai)金(jin)属(shu)离子(zi)之前(qian)到达[50-51]。利(li)用(yong)同步(bu)脉 冲(chong)偏压来(lai)实现(xian)金(jin)属(shu)离子(zi)同(tong)步 HiPIMS(Metal-IonsSynchronized HiPIMS,MIS-HiPIMS)方(fang)法(fa)能(neng)够(gou)选(xuan)择(ze) 性(xing)地(di)增(zeng)加特(te)定(ding)离子(zi)的(de)动(dong)能(neng),同时(shi)最(zui)大限(xian)度地(di)减(jian)少(shao)涂(tu) 层中的(de)惰性(xing)气体(ti),拓展了(le)其在(zai)半(ban)导体领域的(de)应(ying)用。
兰(lan)州空(kong)间技术(shu)物理研(yan)究所的(de) Gui 等[52] 采用(yong) MISHiPIMS技术调(diao)控(kong)高能(neng)离子通量(liang)来优化涂层(ceng)表(biao)面的(de) 轰(hong)击效(xiao)应。研(yan)究表(biao)明(ming),随(sui)着(zhe)同步脉(mai)冲宽(kuan)度(du)的(de)增(zeng)加(jia),沉积的 CrSiN 涂(tu)层从粗糙(cao)的横(heng)向柱(zhu)状(zhuang)结构(gou)逐(zhu)渐演(yan) 变(bian)为光滑(hua)和(he)紧凑的柱(zhu)状结构(gou),晶粒(li)细(xi)化(hua),硬度和弹 性模(mo)量(liang)显(xian)著(zhu)增(zeng)强,磨(mo)损率(lv)低(di)至(zhi) 9.1×10−16 m3/(N·m)。Patidar 等[31] 采(cai)用(yong) MIS-HiPIMS 技术(shu)改(gai)善(shan)倾斜(xie)角(jiao)沉 积(ji) AlN 涂层,发(fa)现无论(lun)沉(chen)积(ji)角度(du)如何(he),涂(tu)层中柱状 晶粒的(de)生长(zhang)几(ji)乎垂直于(yu)基(ji)体(ti)表面(mian),与 HiPIMS 技术(shu) 相比(bi),涂(tu)层(ceng)中惰性(xing)气体离(li)子(zi)含(han)量(liang)降(jiang)低(di)。另外,将(jiang)其(qi) 与 DCMS 沉(chen)积态样品(pin)暴露(lu)于大(da)气(qi)环境 5 min 后(hou),DCMS 涂层(ceng)中约(yue)有(you) 5% 的氧含量,而 MIS-HiPIMS涂层仅(jin)显示表面(mian)氧化,涂(tu)层内(nei)部保(bao)持无(wu)氧(yang)状态(tai)。这 归(gui)因(yin)于其(qi)致(zhi)密微观(guan)结(jie)构 ,防止(zhi)了涂(tu)层(ceng)的晶界(jie)氧(yang)化(hua)。
2.1.3 辅助设备增强(qiang)技术
通过(guo)引(yin)入外部辅(fu)助(zhu)设(she)备,如(ru)叠加(jia)电子(zi)回旋(xuan)共振 装(zhuang)置(zhi)或添(tian)加(jia)外(wai)部磁场(chang),能(neng)够改(gai)变(bian)离(li)子(zi)输运(yun)通量,加(jia) 速(su)涂层沉积过程(cheng),同时(shi)改(gai)善(shan)涂层(ceng)质(zhi)量[53]。早(zao)在(zai) 20 世 纪 90 年(nian)代,电(dian)子(zi)回旋波共振(Electron Cyclotron WaveResonance,ECWR)辅助(zhu)磁(ci)控溅(jian)射技术就有报(bao) 道[54-55]。随后(hou),Stranak 等[56] 验(yan)证了将(jiang) HiPIMS 与(yu) RF(fRF=13.56 MHz)-ECWR 等(deng)离(li)子(zi)体源相结(jie)合(he)沉积(ji)涂 层(ceng)的(de)设想(xiang),研究(jiu)发现(xian),ECWR 辅助显著促进(jin)了(le)金属 离子(zi)的产生,在(zai)低(di)压区域(yu),金(jin)属(shu)电(dian)离(li)通(tong)量(liang)增(zeng)加了(le)约(yue)30%。Krýsová等(deng)[57] 采用反应(ying) HiPIMS 结(jie)合 ECWR的(de)方法(fa)沉积(ji)Fe2O3 涂(tu)层,展(zhan)现(xian)了(le)高电离(li)度与(yu)更多溅 射粒(li)子(zi)的特(te)点(dian),ECWR 的辅助将沉(chen)积涂层(ceng)过程中(zhong) 的最小启(qi)辉气压由1 Pa 降低(di)至 0.35 Pa,复合(he)辅(fu)助(zhu) 技(ji)术(shu)也(ye)显(xian)著(zhu)提高(gao)了放(fang)电脉(mai)冲期间(jian)等(deng)离子(zi)体的(de)电子(zi) 温度(du)与(yu)离(li)子(zi)密(mi)度。微(wei)波(bo)等离(li)子(zi)体(ti)辅助 HiPIMS(Microwave Plasma-Assisted, MA-HiPIMS)技术近(jin)年来(lai) 受到(dao)广泛关注。Hain 等(deng)[58] 研(yan)究(jiu)了(le) HiPIMS 和 MAHiPIMS技(ji)术对 DLC 涂层(ceng)性能的影响(xiang),在 HiPIMS模式(shi)下(xia),等离(li)子体(ti)的(de)最(zui)大(da)电(dian)势和电子(zi)温度数(shu)值(zhi)在脉 冲(chong)结束时(shi)出现(xian),离子(zi)和电子(zi)密(mi)度的峰(feng)值(zhi)略(lve)后出现,余辉期(qi)间(jian),带电粒子飞(fei)溅(jian)向基体(ti),随后(hou)各项参数(shu)数(shu) 值下降。在(zai) MA-HiPIMS 模式下,前 20 μs 为典(dian)型微(wei) 波等(deng)离子(zi)体特(te)性(xing),随后(hou)因微(wei)波源产(chan)生的等(deng)离子(zi)体有 效(xiao)屏蔽(bi)了靶电(dian)势(shi)激增(zeng)引(yin)起(qi)的电(dian)场(chang)快(kuai)速(su)变(bian)化,避免了 电流(liu)峰值产(chan)生(sheng),等(deng)离(li)子体(ti)电(dian)势(shi)、电(dian)子(zi)温(wen)度和(he)离子(zi)密 度(du)在(zai)脉冲结束(shu)前达(da)到(dao)最(zui)小(xiao)值(zhi),而电(dian)子密度(du)在脉(mai)冲(chong)结 束之后(hou)下降(jiang)。尽管(guan) MA-HiPIMS 未显(xian)著提(ti)升涂层(ceng)的(de) 硬(ying)度(du)(上限约 30 GPa),但(dan)涂层(ceng)表面(mian)更光滑。
高(gao)功(gong)率脉冲虽(sui)能(neng)瞬(shun)间释(shi)放(fang)大(da)量(liang)电(dian)子,但(dan)部分电 子会(hui)直接(jie)撞(zhuang)击真空室(shi)壁(bi),使(shi)能(neng)量(liang)损失(shi)。引(yin)入外部(bu)磁 场能够显著(zhu)提(ti)升高能(neng)电(dian)子(zi)的(de)利(li)用(yong)率(lv),有(you)效(xiao)遏(e)制(zhi)其向(xiang) 真(zhen)空(kong)腔(qiang)壁(bi)的逃逸(yi),促进电(dian)子(zi)与真(zhen)空(kong)室内中(zhong)性粒(li)子(zi)的 频(pin)繁(fan)碰(peng)撞(zhuang)与离(li)化过(guo)程(cheng),进而(er)增(zeng)强(qiang)等(deng)离(li)子体的(de)密度与(yu) 活(huo)性(xing)。此(ci)效(xiao)应(ying)不仅能够(gou)加速 HIPIMS 过程(cheng)中(zhong)的(de)沉(chen) 积速(su)率,还(hai)能(neng)改善涂层的质量[59-60]。Li 等(deng)[61] 通(tong)过(guo)辅(fu) 助(zhu)阳极和外部(bu)电磁线圈(quan)来调控(kong)真(zhen)空室(shi)内的电(dian)场(chang)电 势(shi)和阴(yin)极(ji)磁场分(fen)布(bu),形成(cheng)外部电(dian)场(chang)磁(ci)场(chang)同步(bu)增强的(de)HiPIMS(External Electric Field and External Magnetic FieldEnhanced Simultaneously the HiPIMS,(E-MF)- HiPIMS),并以(yi)此来(lai)制(zhi)备 V 涂层(ceng)。结果(guo)表(biao)明(ming)当阳极电(dian)压设定为(wei) 70 V 时(shi),辅(fu)助模(mo)式下(xia)基(ji)体(ti)峰(feng)值离(li)子(zi)电流(liu)密(mi) 度比单一(yi) HiPIMS 模(mo)式增加了(le) 4 倍(bei),且(qie)涂(tu)层(ceng)表(biao)面更(geng)为光(guang)滑(hua)致密(mi)。在相同(tong)靶功(gong)率条件下,(E-MF)-HiPIMS的沉积速(su)率(lv)比传(chuan)统(tong) HiPIMS 高(gao)约(yue) 73%。Tian 等(deng)[62]通(tong)过磁(ci)场增(zeng)强(qiang) HiPIMS 技术(shu)沉(chen)积了(AlTi)xN1−x 涂 层,涂层(ceng)的(de)沉积速(su)率和硬度(du)分别从 23.67 nm/min 和23 GPa增(zeng)加至 25.67 nm/min 和(he) 28 GPa,表(biao)面粗糙度(du) 从(cong) 8.7 nm 降低(di)至(zhi) 5.2 nm,进一步(bu)验证(zheng)了磁(ci)场辅助在 优(you)化(hua)HiPIMS 技(ji)术(shu)方(fang)面的有(you)效性(xing)。
在(zai) HiPIMS 技术(shu)中(zhong)引(yin)入(ru)外(wai)部辅助(zhu)装(zhuang)置及(ji)(或(huo))添(tian)加外部(bu)磁(ci)场(chang),一定(ding)程(cheng)度上(shang)提高了(le)电(dian)离效率(lv)和(he)等(deng)离 子(zi)体(ti)稳定(ding)性,提高(gao)了(le)涂(tu)层沉积速(su)率(lv)与(yu)性(xing)能。另(ling)外(wai),外部磁场(chang)的(de)引入(ru)进(jin)一(yi)步提(ti)升(sheng)了(le)电(dian)子(zi)利用率(lv),减(jian)少了(le) 能(neng)量损失。但(dan)这些方法都(dou)存(cun)在高成(cheng)本、高能(neng)耗的(de) 特(te)点(dian) ,不利于(yu)工(gong)业化(hua)发展应用(yong)。
2.2 HiPIMS 与磁(ci)控(kong)溅射复(fu)合技(ji)术(shu)
2.2.1 HiPIMS 与直流(liu)磁控(kong)溅射(she)复(fu)合技术
直流(liu)磁(ci)控(kong)溅(jian)射(she)(DCMS)技术具(ju)有(you)较(jiao)低的(de)离(li)化(hua) 率,较(jiao)高(gao)的沉(chen)积速率,而 HiPIMS 技(ji)术由于溅射(she)靶 材(cai)离(li)化后(hou),一部(bu)分(fen)离(li)子(zi)返回靶面(mian)产生自(zi)溅(jian)射过(guo)程(cheng),导(dao)致(zhi)到(dao)达基体的(de)溅(jian)射离(li)子减少(shao),沉(chen)积(ji)速率(lv)较(jiao)低,将(jiang)HiPIMS 与(yu) DCMS技(ji)术(shu)结(jie)合(he)可以有效缓(huan)解 HiPIMS沉(chen)积速(su)率低的(de)问(wen)题(ti)[63-64]。
HiPIMS/DCMS 共(gong)溅(jian)射(she)装置(zhi)结(jie)合 了 DCMS 源(yuan) 提(ti)供(gong)的(de)高(gao)沉积(ji)速(su)率与(yu) HiPIMS 源(yuan)产(chan)生的(de)高(gao)能(neng)金属 离子(zi),实现(xian)了涂(tu)层(ceng)性能的(de)优(you)化,在保证力学(xue)性能的 同时降(jiang)低残余(yu)应(ying)力。Hsu 等[65] 对(dui)比(bi)了(le)高(gao)功(gong)率(lv)脉(mai)冲 和(he)直流(liu)磁控共溅射(she)技术(shu)沉(chen)积(ji)的(de) TiWC 涂层(ceng),采用(yong)复 合(he)技术制备的 TiWC 涂(tu)层致密(mi),硬度(du)高(gao)于(yu) 30 GPa,与(yu) DCMS 相(xiang)比(bi),工艺(yi)相(xiang)对能(neng)耗(hao)降低(di)了 77%。他(ta)们(men) 通过该技术制(zhi)备(bei)的 TiAlSiN 涂(tu)层(ceng)在保持硬度高达30 GPa 的同时,将(jiang)残余(yu)应力控(kong)制在 0.5 GPa 以内(nei)[66]。Liu 等[67] 通 过 DCMS 和 HiPIMS/DCMS 共溅(jian)射在 充(chong) He 条(tiao)件(jian)下(xia)沉积(ji)了的(de) Al涂层(ceng),结果(guo)表明,采用HiPIMS/DCMS 共(gong)溅(jian)射时(shi),由于(yu)溅(jian)射的(de)金属离(li)子能(neng) 量高,沉(chen)积(ji)的(de)金(jin)属颗粒(li)的(de)迁移能力(li)得到增(zeng)强(qiang),晶(jing)粒 尺(chi)寸(cun)增(zeng)大(da),位错(cuo)环的(de)直(zhi)径(jing)和(he)密度减小(xiao)。Dias 等(deng)[68]报道(dao)了(le)有(you)关(guan) TiAlTaN 涂层的沉(chen)积:复合 DCMS/HiPIMS工艺(yi)结(jie)合(he)了(le) DCMS 和 HiPIMS 的优(you)点(dian),所沉(chen)积(ji) 涂(tu)层的硬(ying)度(du)(40 GPa)与(yu)用(yong)单(dan)一 HiPIMS 工(gong)艺(41 GPa)沉积(ji)的(de)相当,但在相(xiang)同(tong)条件下(xia),其(qi)沉(chen)积速率(lv)可(ke)达(da) 到(dao) HiPIMS 工(gong)艺的 2 倍(bei)。Ding 等[69] 使用DCMS 和HiPIMS、复(fu)合(he)技(ji)术在(zai)不同的偏(pian)置电压下沉积 Cr 涂 层(ceng)。结(jie)果表明,随着(zhe)偏压(ya)的增(zeng)加,涂(tu)层(ceng)沉积速率(lv)的 下降逐渐减慢(man), 但 在(zai) 500 V 偏压时(shi)仍(reng)可保(bao)持(chi) 约100 nm/min 的(de)沉积(ji)速(su)率(lv),涂(tu)层(ceng)表(biao)面粗(cu)糙(cao)度(du)随(sui)偏压(ya)增大(da)而增(zeng)大。Zoita 等[70] 报(bao)道,与(yu) DCMS 溅(jian)射相(xiang)比,在相同(tong)温度(du)下(xia)用 DCMS/HiPIMS 复(fu)合技术(shu)制备(bei)的TiC 涂层(ceng)具(ju)有(you)更好(hao)的(de)结(jie)构有(you)序性(xing),电(dian)阻率(lv)值降低了6%~23%。在 200 ℃ 沉(chen)积(ji)温(wen)度下,用 DCMS 沉积的 涂(tu)层表面粗(cu)糙度约为用 DCMS/HiPIMS 技(ji)术(shu)沉(chen)积(ji) 涂层的(de) 3 倍(bei)。Wu 等[71] 采用(yong) Al-HiPIMS/TiSi-DCMS配置制备了(le)TiAlSiN 涂层,其(qi)最(zui)大(da)金属(shu)原子(zi)比(bi)为Al/(Al+Ti)=0.59,Si 原(yuan)子(zi)数含量为(wei) 9.4 %,合(he)成了(le)比 传统溅射技(ji)术组(zu)成(cheng)范(fan)围更广(guang)的 NaCl 结(jie)构亚稳(wen)态过(guo) 渡金属氮化(hua)物(wu)。Tillmann 等[72] 使(shi)用(yong)不(bu)同(tong)技术沉(chen)积(ji)TiAlN 涂层(ceng),DCMS 涂层仅(jin)有(you)−1 817.0 MPa 的残余(yu) 压应力(li),HiPIMS 放(fang)电(dian)的(de)高电(dian)离导致涂(tu)层(ceng)残余应(ying)力(li) 值(zhi)高(gao)达(da)−5 979.2 MPa,超过单(dan)一(yi) DCMS 涂层残余应 力的(de) 3 倍,而(er)用复合(he)技术制备(bei)的(de)涂(tu)层的残余(yu)应(ying)力低(di) 至(zhi)−626.4 MPa 左(zuo)右。类似的(de)低(di)残余应力现象在(zai)其(qi) 他文(wen)献中也(ye)有(you)报(bao)道(dao)[73]。
在(zai) HiPIMS/DCMS 工艺(yi)中(zhong),由(you)于(yu) HiPIMS 离化(hua) 率较(jiao)高,不同靶位配置(zhi)模(mo)式下(xia)涂(tu)层(ceng)性能(neng)差异(yi)较大。Wicher 等(deng)[74] 报(bao)道,不同靶(ba)位配置会(hui)对(dui) Ti1-xAlxBy 涂(tu) 层产(chan)生较大(da)影(ying)响,两种(zhong)模(mo)式下(xia)涂(tu)层(ceng)硬度(du)均随着(zhe) Al含(han)量增加(jia)而降低,TiB2HiPIMS/AlB2-DCMS 模式下x=0.36 时,硬(ying)度(du)达到最大值(zhi) 43.1 GPa±2.6 GPa,x=0.76时(shi)涂(tu)层(ceng)硬度(du)低至(zhi) 20.0 GPa±1.2 GPa,而(er) AlB2-HiPIMS/ TiB2-DCMS 涂(tu)层硬(ying)度最高可达(da) 46.0 GPa±2.5 GPa,即(ji)使(shi)Al 含量最高(gao)(x=0.74)的涂(tu)层(ceng)也具(ju)有(you) 32.8 GPa± 1.7 GPa 的(de)硬(ying)度(du)值。Greczynski 等(deng)[75] 利(li)用(yong) Ti- HiPIMS/ Si-DCMS 和 Si-HiPIMS/Ti-DCMS 两(liang)种靶(ba)材配置(zhi)模 式(shi)下(xia)沉(chen)积 Ti1−xSixN 涂层(ceng)。图(tu) 9 为(wei) 200 μs 内(nei)靶(ba)电压、电流(liu)及功(gong)率(lv)密度的(de)波形变(bian)化, HiPIMS 电(dian)压(ya)值(zhi)在(zai) 一(yi)个(ge)波(bo)长内呈(cheng)下降至稳定趋(qu)势,Si-HiPIMS 的电压(ya)在(zai)稳定(ding)时(shi)约(yue)为 Ti-HiPIMS 的(de) 3 倍;HiPIMS 电(dian)流值 在(zai)一个(ge)波(bo)长(zhang)内(nei)呈先(xian)增大(da)后减小(xiao)趋(qu)势(shi),Ti-HiPIMS 电流(liu)密(mi)度(du)峰值出现早于 Si-HiPIMS,功(gong)率(lv)密(mi)度呈(cheng)现(xian)相(xiang) 同趋(qu)势。高离(li)化率(lv)的 Ti 源(Ti-HIPIMS)与(yu)低离(li)化(hua)率(lv)的 Si 源(Si-DCMS)易促(cu)进第二相 a-SiNx 析出,生(sheng) 成纳(na)米复(fu)合结构,获得(de)高(gao)硬度(du)涂(tu)层(ceng);反(fan)之,高(gao)离(li)化率的(de) Si 源(yuan)(Si-HIPIMS)和(he)低(di)离(li)化率的(de) Ti 源(yuan)(Ti-DCMS)组(zu)合,倾(qing)向(xiang)于生成 Ti1−xSixN 固(gu)溶(rong)体,涂(tu)层硬(ying)度较低(di)。
HiPIMS 与 DCMS 复合技术(shu)结合(he)了两(liang)者优(you)势, 有(you)效缓(huan)解(jie)了 HiPIMS 中的(de)自溅(jian)射(she)现(xian)象(xiang),增(zeng)强了(le)涂(tu)层(ceng) 的结晶度(du)与沉(chen)积速率(lv),并(bing)保持(chi)涂(tu)层(ceng)的高硬度。复合(he) 技术虽降(jiang)低了相对(dui)能(neng)耗(hao),但粒(li)子离(li)化(hua)率及(ji)系(xi)统(tong)的(de)等(deng) 离(li)子(zi)体(ti)密(mi)度也(ye)有(you)相应(ying)损失,且不同(tong)靶(ba)位配置(zhi)显著影 响(xiang)涂(tu)层微(wei)观(guan)结(jie)构(gou)与(yu)性能。总(zong)体(ti)而(er)言(yan),HiPIMS/DCMS复(fu)合(he)技(ji)术为制(zhi)备(bei)高(gao)性(xing)能(neng)涂层(ceng)提(ti)供了有效途(tu)径,但(dan)仍(reng) 需(xu)平衡(heng)两者来(lai)调(diao)控对(dui)涂层(ceng)性能的(de)影(ying)响机制(zhi)。

2.2.2 HiPIMS 与射频磁(ci)控(kong)溅射复合(he)技(ji)术
射(she)频磁(ci)控溅射(she)(RFMS)技(ji)术是通过施(shi)加高(gao)频(pin)电(dian) 场(国(guo)际上(shang)常(chang)用(yong)的(de)射频频(pin)率为(wei) 13.56 MHz)实(shi)现电(dian)容 耦合或(huo)电(dian)感(gan)耦合形(xing)成等离子(zi)体(ti),电子(zi)与气(qi)体(ti)分子发 生(sheng)碰(peng)撞(zhuang)使气(qi)体分子(zi)离(li)化(hua),高能(neng)粒(li)子经电(dian)场加速轰(hong)击(ji) 靶材(cai),使(shi)原(yuan)子或(huo)分(fen)子被(bei)溅射。RFMS 因对靶(ba)材的广(guang) 泛适用(yong)性及高(gao)效(xiao)的沉(chen)积速率而备(bei)受瞩(zhu)目,适用于导 体、半导体(ti)和(he)绝缘靶材(cai)。这(zhe)是(shi)因为(wei)射频电(dian)场(chang)能够(gou) 在(zai)非导(dao)电(dian)材(cai)料中(zhong)产(chan)生(sheng)感(gan)应(ying)电(dian)流(liu),激活(huo)靶(ba)材表面(mian)的等 离(li)子(zi)体(ti),为溅(jian)射(she)过(guo)程(cheng)提供了必(bi)要的(de)能(neng)量(liang)与条件(jian)。鉴(jian) 于 HiPIMS 技术(shu)在沉(chen)积(ji)速率方面存(cun)在的(de)局(ju)限(xian)性(xing),有(you) 研(yan)究者提出了(le)采用(yong) HiPIMS与 RFMS 的共(gong)沉积(ji)策(ce) 略(lve),不(bu)仅(jin)弥补了(le) HiPIMS 在沉(chen)积速(su)率(lv)上的不足,还 进(jin)一步拓宽(kuan)了可(ke)用(yong)靶材的多(duo)样(yang)性[76]。
HiPIMS 与(yu) RFMS 共溅(jian)射(she)能够(gou)在改(gai)善涂(tu)层(ceng)力学 性(xing)能的同时(shi),提(ti)高(gao) HiPIMS 溅射(she)效率,增大靶功(gong)率 密(mi) 度,改善(shan)沉积速率(lv)。 Diyatmika 等(deng)[77] 采(cai) 用 HiPIMS/RFMS复合(he)技(ji)术(shu)制备(bei)了(le) Cr-Si-N 涂层(ceng),研(yan)究发 现(xian),增加(jia)RF 靶(ba)功率和 HiPIMS 占空比均(jun)可(ke)提(ti)高沉 积速率(lv)。另(ling)外(wai),涂(tu)层(ceng)硬度(du)和(he)弹性模量(liang)随着(zhe) RF 靶功 率(lv)的(de)增加(jia)和(he)HiPIMS 占空比(bi)的(de)减(jian)小(xiao)而(er)增加(jia),最(zui)高(gao)分 别(bie)达到了(le) 31.5 GPa 和(he) 292 GPa。Holtzer 等[78] 通过(guo)该 复(fu)合沉积(ji)技(ji)术提(ti)高(gao)了 a-NbSi 涂层(ceng)的沉积(ji)速率以(yi)及 均(jun)匀(yun)性(xing),涂层的超导临界(jie)转(zhuan)变温(wen)度(du)(Tc)和(he)电阻(zu)率(ρ)均呈(cheng)现出优异(yi)性(xing)能。研(yan)究(jiu)还表(biao)明(ming),预(yu)电离在混(hun)合(he)技(ji) 术中(zhong)能够(gou)有效(xiao)减少电(dian)流(liu)响应延(yan)迟(chi)。叶(ye)谱生等(deng)[79] 结(jie) 合 HiPIMS和(he) RFMS 技(ji)术(shu)制备出(chu)硬(ying)度(du)高达 43.65 GPa的纳米复合结构 TiB2-Ni 涂(tu)层(ceng)。Lou 等[80] 使用(yong)该复(fu) 合技(ji)术制备 TiCrSiN 涂层,提(ti)高(gao)了(le)溅射(she)效率(lv),当 RFSi靶(ba)功(gong)率从 50 W 增加到 150 W 时(shi),由 HiPIMS 供 电(dian)的 TiCr靶的(de)峰值功(gong)率密度(du)从(cong) 1 214 W/cm2 增加(jia) 到 1 350 W/cm2。来(lai)自(zi)靶材和溅(jian)射气(qi)体(ti)的所(suo)有(you)溅射 离(li)子(zi)的(de)能(neng)量(liang)分布尾(wei)部向更高(gao)能量区(qu)域偏(pian)移,这(zhe)可(ke)能 是(shi)因(yin)为(wei)鞘(qiao)层电压(ya)受(shou)到等离子(zi)体(ti)电势的(de)影(ying)响(xiang),而(er)等(deng)离 子体电势(shi)反过(guo)来(lai)又(you)受到(dao)等(deng)离(li)子(zi)体生(sheng)成方(fang)式(shi)以及相 邻磁控源产(chan)生的(de)等(deng)离子体(ti)的影响所致(zhi)。
HiPIMS/RFMS 复合技术(shu)融合(he)了(le) HiPIMS 的(de)高8 真(zhen)空(kong)与(yu)低温(wen) 第(di) 31 卷 第 1 期(qi)能离(li)子优势与(yu) RFMS 在(zai)非导电靶(ba)材上的广(guang)泛适用 性(xing),为(wei)氧化(hua)物涂层(ceng)制备提(ti)供(gong)了有(you)效方(fang)法,但 RFMS技术的高(gao)成(cheng)本(ben)、涂(tu)层(ceng)的(de)高残余(yu)应力(li)及(ji)在(zai)复杂(za)结(jie)构 基体上(shang)难以均(jun)匀沉(chen)积(ji)等缺(que)点也(ye)限(xian)制了(le)其(qi)应用(yong)推广(guang),需综合考虑其技(ji)术挑(tiao)战与经济成(cheng)本(ben)。
2.2.3 HiPIMS 与(yu)中频磁控溅射(she)复合技(ji)术
中(zhong)频磁(ci)控(kong)溅(jian)射(Medium Frequency Magnetron Sputtering,MFMS)技术(shu)一般(ban)用(yong)两(liang)个并(bing)排(pai)的(de)溅射靶,也(ye)称(cheng)为孪生(sheng)靶(ba),阳极与(yu)阴极(ji)在(zai)两(liang)个(ge)孪(luan)生靶(ba)中(zhong)交替变(bian) 换,通(tong)过施(shi)加交(jiao)变(bian)电(dian)场中(zhong)和(he)因负电(dian)压(ya)在靶(ba)面积(ji)累的 正(zheng)电荷,从而(er)抑(yi)制(zhi)打(da)火(huo)现象(xiang),并完(wan)成溅(jian)射过程。溅 射电(dian)源(yuan)的(de)工作(zuo)频(pin)率一(yi)般(ban)在 10~100 kHz 内,峰(feng)值功(gong) 率(lv)密度(du)低于(yu)0.1 kW·cm−2,占空(kong)比较高(gao)(≥50%),虽(sui) 然(ran)溅射(she)产(chan)物(wu)的(de)电(dian)离(li)率相对较(jiao)低,但(dan)能(neng)实(shi)现较(jiao)高(gao)的沉 积速(su)率。此(ci)外(wai),还能(neng)在反应(ying)气(qi)氛(fen)(尤其是氧(yang)化性(xing)气(qi) 氛(fen))中(zhong)有效沉积(ji)涂(tu)层,相较(jiao)于其他(ta)方(fang)法,显著(zhu)减(jian)少(shao)了“靶(ba)中毒”现象,抑制打(da)弧(hu)的产(chan)生。目(mu)前(qian)将(jiang) HiPIMS与 MFMS 相结合的系(xi)统主要分为(wei)三种类型,其不(bu) 同之处(chu)在于(yu)电(dian)源及(ji)其与溅(jian)射靶(ba)材(cai)的连接(jie)方(fang)式[81]。 第一(yi)种(zhong)采用两个(或(huo)更(geng)多)独立(li)磁(ci)控(kong)靶位(wei),其(qi)中(zhong)一(yi)个(ge) 靶(ba)位(wei)在(zai) MFMS 模式(shi)工(gong)作(zuo),另(ling)一个在 HiPIMS 模(mo)式下 运行;第(di)二(er)种(zhong)系统将(jiang)两个(ge)电(dian)源(yuan)并(bing)联至同(tong)一(yi)磁(ci)控(kong)靶位,通过(guo)二(er)极(ji)管在(zai)输(shu)出(chu)端(duan)实(shi)现电(dian)流(liu)叠加(jia),进(jin)而形成单(dan) 极 HiPIMS 和 MF 脉(mai)冲(chong);第(di)三(san)种(zhong)也(ye)采(cai)用双(shuang)磁(ci)控(kong)靶(ba)位 交替(ti)极性(xing)电流(liu)供电(dian),通过(guo)双(shuang)极电(dian)压脉冲(chong)交(jiao)替(ti)溅(jian)射两 个靶材,从(cong)而清(qing)除靶(ba)材(cai)表(biao)面的(de)介(jie)电(dian)涂层(ceng)并(bing)补(bu)偿(chang)正(zheng)空(kong) 间电(dian)荷(he),以此(ci)解决介(jie)电(dian)涂层(ceng)磁控(kong)溅射(she)沉(chen)积过程(cheng)中(zhong)阳 极损耗(hao)和(he)频(pin)繁打(da)弧(hu)的问题。
采(cai)用(yong) HiPIMS/MFMS 复合(he)技(ji)术沉(chen)积涂(tu)层能(neng)够 有效解(jie)决(jue)频繁(fan)打(da)弧(hu)现(xian)象(xiang),提(ti)高沉(chen)积速(su)率,并改善涂 层(ceng)性能(neng)。Moirangthem 等[82] 的报(bao)道(dao)表(biao)明(ming),与(yu)单(dan)一(yi)HiPIMS 技术(shu)相(xiang)比,用复(fu)合(he)技术所(suo)制备 WOx 涂层(ceng)具 有(you)更高(gao)的沉(chen)积(ji)速(su)率(lv)和(he)硬(ying)度(du)。在(zai)相(xiang)同(tong)条(tiao)件(jian)下(xia),使用(yong)HiPIMS-MF 技术的涂(tu)层(ceng)沉(chen)积速(su)率达到(dao) 62.6 nm/min,明(ming)显(xian)高(gao)于(yu)单(dan)一HiPIMS 技术的 35.1 nm/min。Chuang等[83] 采(cai)用(yong)该复合(he)技术(shu)制(zhi)备了(le)电阻(zu)率低至 3.41 Ω·cm、沉(chen)积速率高(gao)达 13.9 nm/min 的(de)富(fu) Ni3+的 NiO 涂(tu)层(ceng)。Lou 等[84] 对比了不(bu)同制备技术(shu)对 TiN 涂(tu)层(ceng)截面形(xing)貌 的影响(xiang),结果(guo)表(biao)明:用(yong) DCMS 制备(bei)的涂(tu)层呈(cheng)现出相(xiang) 对(dui)多孔(kong)的(de)柱状(zhuang)结构;用 MFMS 沉(chen)积的涂(tu)层(ceng)在亮场(chang) 图(tu)像中(zhong)可见沿(yan)柱状(zhuang)晶粒分布的(de)缺陷(xian);而用(yong) HiPIMS/ MFMS 复(fu)合技(ji)术制(zhi)备 的 TiN 涂(tu) 层(ceng) , 由 于(yu) HiPIMS增(zeng)强(qiang)的离(li)子(zi)轰(hong)击(ji)效(xiao)应(ying),表(biao)现(xian)出比(bi)单独(du)使用 HiPIMS或(huo) DCMS 制备(bei)的(de)膜(mo)更为(wei)致密紧凑的微(wei)观结构。Ferreira 等(deng)[85] 采用不(bu)同方(fang)式(shi)沉(chen)积 Al2O3 涂层,与单独(du) 使用 HiPIMS 技(ji)术(shu)相(xiang)比(bi),MFMS/HiPIMS 的复(fu)合(he)可(ke)提 升沉积(ji)速(su)率(lv),降低涂层(ceng)内(nei)部(bu)的压(ya)应(ying)力(li)与结(jie)晶度。另 外(wai),单(dan)一 HiPIMS 沉(chen)积的(de)涂层压(ya)应力高(gao)达 10 GPa± 1.6 GPa,用复合技术沉(chen)积速(su)率(lv)大幅提(ti)高,应力(li)降低(di)至(zhi)−4.10 GPa±0.6 GPa。Kment 等(deng)[86] 分(fen)别采(cai)用 HiPIMS和 HiPIMS/MFMS 复合(he)技术在FTO 导(dao)电(dian)玻璃(li)基体(ti) 上(shang)沉积了(le)厚(hou)度(du)约 30 nm 的 TiO2 阻(zu)挡层 , 并(bing)使(shi)用(yong) 循环(huan)伏(fu)安法(fa)测试(shi)涂(tu)层覆(fu)盖(gai)率(lv),两种(zhong)方法所(suo)制备的沉 积态 TiO2 涂(tu)层均致(zhi)密,但经(jing) 450 ℃ 热(re)处(chu)理后(hou),用(yong)HiPIMS 技术(shu)制备的样品(pin)的峰值(zhi)电流密(mi)度低(di)于无(wu)涂(tu) 层 FTO 基体(ti),并(bing)伴(ban)随峰间(jian)分离。原(yuan)因在(zai)于,经(jing)退火 处(chu)理(li)后(hou),用(yong) HiPIMS 技(ji)术制备的(de) TiO2 涂(tu)层结(jie)晶度(du)较(jiao) 低、缺(que)陷较(jiao)多,涂(tu)层覆盖率较(jiao)低(di),导致(zhi)涂(tu)层对电(dian)荷 转移(yi)的(de)阻挡性(xing)失(shi)效。与此相比,用HiPIMS/MFMS复(fu)合技(ji)术(shu)制(zhi)备的涂(tu)层具有(you)较(jiao)好的结晶性(xing)和较(jiao)少缺 陷,涂(tu)层(ceng)覆(fu)盖率较(jiao)高,能(neng)够(gou)有效阻(zu)挡电荷转移(yi)。
将 MFMS 引入(ru)到(dao) HiPIMS 放电(dian)中(zhong),通过不同(tong)配 置(zhi)方式(shi)实现(xian) HiPIMS 与 MFMS 的(de)协同(tong)作用,有效(xiao)提(ti) 升了(le)涂层(ceng)的沉(chen)积速(su)率(lv),同(tong)时降低了内(nei)部(bu)压(ya)应力,提 高(gao)了(le)涂(tu)层的(de)热稳(wen)定性和(he)电(dian)化(hua)学(xue)性能(neng),并(bing)抑(yi)制了(le)靶材(cai) 打弧(hu)现(xian)象(xiang)。然而(er),复合系统(tong)也(ye)面(mian)临(lin)技(ji)术复(fu)杂性(xing)与成 本增(zeng)加(jia)的挑(tiao)战 ,限(xian)制(zhi)了(le)其(qi)应用。
2.3 HiPIMS 与电弧(hu)复(fu)合技术(shu)
电(dian)弧离子(zi)镀(AIP)技(ji)术(shu)具(ju)有高电(dian)离(li)度和(he)沉(chen)积(ji)速 率(lv)等优(you)点,但(dan)是,该技术(shu)沉积过程(cheng)中(zhong)会(hui)产生(sheng)大量(liang)液(ye) 滴(di),使(shi)所制(zhi)备的涂层(ceng)表(biao)面(mian)有较(jiao)多大颗(ke)粒,因(yin)而(er)有(you)较(jiao) 高(gao)的表面粗(cu)糙(cao)度。不(bu)同(tong)的(de)靶(ba)材所产(chan)生(sheng)的(de)液滴(di)数量 和尺(chi)寸不同,如 VN 的液滴数量远(yuan)高于 CrN,这一 缺(que)陷严重限制(zhi)了其(qi)在(zai)高端涂层制(zhi)备(bei)领(ling)域的(de)广泛应(ying) 用(yong)。另(ling)外,对于(yu)一些(xie)高纯度(du)高熔点或无(wu)法蒸发(fa)离(li)化 的(de)靶材(Mo 靶(ba)、Si 靶和(he) B 靶(ba)等),电(dian)弧弧(hu)斑(ban)放电不 稳定或(huo)无(wu)法(fa)起弧,而在(zai)溅射(she)源(yuan)(HiPIMS)上(shang)工(gong)作稳 定(ding),能(neng)被(bei)较(jiao)好地原(yuan)子(zi)化和离子(zi)化。HiPIMS 与电(dian)弧(hu) 复(fu)合(he)可将电(dian)弧(hu)无法蒸(zheng)发(fa)离化或产生(sheng)液滴含量高的 靶材应(ying)用(yong)于 HiPIMS 源,降低涂层(ceng)表(biao)面粗(cu)糙度。
采(cai)用 HiPIMS/AIP 复合(he)技(ji)术(shu)沉积(ji)涂(tu)层时(shi),高密 度(du)等(deng)离子(zi)体(ti)使(shi)气(qi)体和(he)金(jin)属(shu)电(dian)离增强,涂层(ceng)的(de)表(biao)面(mian)平(ping) 滑度和(he)机(ji)械性能提(ti)高。Chang 等(deng)[87] 将(jiang)真(zhen)空电(dian)弧蒸(zheng) 发(Vacuum Arc Evaporation,VAE)与 HiPIMS 技(ji)术 结(jie)合沉(chen)积(ji)TiN 涂层(ceng),在(zai)单(dan)一 VAE 模式下(xia),涂(tu)层(ceng)柱状(zhuang) 晶(jing)的平均(jun)尺寸为 121 nm,当(dang) HiPIMS 功(gong)率(lv)增加到(dao) 4 kW时(shi),晶粒细化(hua)(47.8 nm)。该(gai)团队(dui)还报(bao)道(dao)了用(yong) HiPIMS/ CAE(阴极电弧蒸发)沉积 TiN 的(de)工(gong)艺,研究发现,涂(tu)层(ceng)表(biao)面宏观(guan)颗粒数(shu)量和尺(chi)寸与(yu)占(zhan)空比呈正(zheng)相关(guan),降 低(di)占空比能(neng)够减(jian)小(xiao)涂层中(zhong)柱(zhu)状(zhuang)晶(jing)尺(chi)寸,增加纳米晶(jing) 数(shu)量,从而引(yin)入(ru)更(geng)多的晶(jing)界来(lai)抵(di)抗位(wei)错(cuo)[88],增加(jia)离(li) 子轰击(ji)通量(liang)可(ke)以有效去(qu)除涂(tu)层生长过程中(zhong)形成(cheng)的 松散(san)颗(ke)粒。
Singh 等(deng)[89] 使(shi)用电(dian)弧(hu)增强 HiPIMS 技(ji)术 制(zhi)备 AlCrN 涂层,其(qi)致密(mi)的微(wei)观(guan)结构(gou)有效阻碍了氧(yang) 原(yuan)子(zi)向基(ji)体(ti)方向(xiang)的(de)扩散,而使涂(tu)层(ceng)具有(you)优异(yi)的抗(kang)氧(yang) 化性(xing)。Ding 等(deng)[90] 采(cai)用(yong) HiPIMS /AIP 复(fu)合技术(shu)沉(chen)积(ji) 具有(you)非(fei)晶(jing)Si3N4 包(bao)裹 Cr(Mo)N 纳米晶(jing)的 Cr-Mo-Si-N纳(na)米复(fu)合结(jie)构涂层,涂层(ceng)硬(ying)度(du)最高可(ke)达 26.5 GPa。 欧瑞(rui)康巴尔(er)查(cha)斯(si)(Oerlikon Balzers)推(tui)出(chu)的 H13 涂层 技术(shu)结(jie)合(he)了(le)电弧(hu)蒸(zheng)发、HiPIMS 和(he)电(dian)弧(hu)增(zeng)强(qiang)辉光放(fang)电(dian) 三(san)重(zhong)增(zeng)强(qiang)电(dian)离,实(shi)现(xian)了对微(wei)合金(jin)化、掺杂(za)以及层结 构设计(ji)的(de)调控(kong),同(tong)时保证了经(jing)济(ji)高(gao)效的生产。H13系列涂(tu)层刀(dao)具在加工(gong) 42CrMo4 零件时(shi)展(zhan)现(xian)出(chu)卓越 的切(qie)削(xue)性能,能够(gou)完成(cheng)多(duo)达 2001 个(ge)零件的(de)加工。
HiPIMS 技(ji)术对等(deng)离子体气氛(fen)要求较(jiao)高,如(ru)通(tong) 入氧气(qi)时易产(chan)生(sheng)打(da)弧(hu)现象(xiang),对沉积(ji)氧化(hua)物影响较大。Geng 等(deng)[91] 通过 CAE/HiPIMS 复合技术在不(bu)同(tong) O2进气方(fang)式(shi)下沉(chen)积(ji)了(le) Cr-O/Al-O 涂层,并与(yu)用(yong) CAE 制(zhi) 备(bei)的(Cr,Al)2O3 涂层进(jin)行了对(dui)比,图(tu) 10 为几(ji)种涂 层的(de)表(biao)面形貌(mao)和(he)截(jie)面形貌,其中(zhong)(a)(d)为复合(he)技(ji)术 制(zhi)备(bei)Cr-O/Al-O 涂(tu)层(O2 从 HiPIMS 靶材附(fu)近通入); (b)(e)为(wei)复合技术(shu)制(zhi)备(bei) Cr-O/Al-O 涂层(O2 从CAE靶(ba)材附近(jin)通入);(c)(f)为(wei)电弧蒸发(fa)制备(Cr,Al)2O3涂(tu)层。采用(yong)复(fu)合(he)技(ji)术制(zhi)备(bei)的(de) Cr-O/Al-O 涂层(ceng)表面 缺(que)陷明(ming)显(xian)少于(yu)用(yong) CAE 制备的(Cr,Al)2O3 涂层(ceng)。
采(cai)用(yong)复合技(ji)术(shu)制(zhi)备的(de) Cr-O/Al-O 涂(tu)层(ceng),如图(tu) 10(a)(b)所(suo)示,表面(mian)缺(que)陷明(ming)显少于用 CAE 制备(bei)的(Cr,Al)2O3,如(ru)图 10(c)所(suo)示(shi)。另外(wai),由(you)于(yu) HiPIMS 源 Al 靶(ba)对 O2 的敏感性(xing)较(jiao)高,当(dang)从 CAE 源 Cr 靶附近通入 O2 时(shi),能(neng)够更(geng)有效地(di)控制(zhi)氧(yang)气流(liu)量范围(wei),使(shi)涂 层表面颗粒数量(liang)减少(shao),同时(shi)抑制(zhi) HiPIMS 源(yuan)溅(jian)射(she)过 程中的(de)打弧(hu)放电。

HiPIMS/AIP 复合(he)技术结(jie)合(he)了 HiPIMS 的低(di)表(biao) 面粗(cu)糙度和(he) AIP 的(de)高(gao)沉积(ji)速(su)率,可(ke)以(yi)有效(xiao)增(zeng)强气(qi)体(ti) 和(he)金(jin)属的电离,减(jian)少涂层表面(mian)的(de)宏观(guan)颗粒(li)数(shu)量(liang)和(he)尺 寸,细(xi)化晶(jing)粒,提高(gao)了(le)涂层的(de)机械(xie)性能和硬(ying)度。此 外,该(gai)复(fu)合技术还(hai)能通(tong)过调(diao)控(kong)氧(yang)气(qi)进(jin)气(qi)方式来(lai)抑 制 HiPIMS 源(yuan)打弧(hu)放电,进(jin)一步提升了涂(tu)层(ceng)的质量。 但(dan)这(zhe)种(zhong)复合技术(shu)需平(ping)衡(heng)溅(jian)射与电弧(hu)气(qi)压(ya),并精确(que)控(kong) 制各工艺(yi)参(can)数(shu)以(yi)实(shi)现(xian)最(zui)佳性(xing)能。
3、HiPIMS 复(fu)合技(ji)术(shu)的(de)应用领(ling)域及展(zhan)望(wang)
3.1 在(zai)硬质(zhi)涂(tu)层与(yu)耐磨(mo)材料(liao)中的应用
HiPIMS 技术(shu)作(zuo)为一(yi)种先进的(de)表(biao)面(mian)处(chu)理(li)技(ji)术,凭(ping)借其(qi)独特的(de)脉(mai)冲放电模(mo)式(shi),在(zai)硬质涂层领(ling)域(yu)展现(xian) 出(chu)了(le)显(xian)著优势。特(te)别是(shi)在现代加工(gong)制(zhi)造业(ye)领域(yu),高(gao) 性(xing)能刀(dao)具(ju)涂层技(ji)术(shu)对于提(ti)升(sheng)加工(gong)效(xiao)率、延长(zhang)刀具 服(fu)役寿(shou)命及(ji)降低生(sheng)产(chan)成(cheng)本起(qi)着至关重(zhong)要的作(zuo)用(yong)[92-93]。Ganesan 等[94] 采(cai)用(yong)双(shuang)极(ji) HiPIMS 技(ji)术在 WC-Co 刀(dao) 片(pian)上(shang)沉积非晶(jing)碳膜,并(bing)进(jin)行(xing)切(qie)削(xue)退火马氏(shi)体(ti)时(shi)效钢 试验,结果表(biao)明,与(yu)脉(mai)宽为(wei) 0 μs 的 DCMS 相比,当 脉(mai)宽为 150 μs时(shi),在给(gei)定的加工时间内(nei),后(hou)刀面(mian)磨 损(sun)量减少(shao)了近 50%,刀(dao)具的使(shi)用寿命增加(jia)了近(jin) 2 倍。Tillmann 等(deng) [95] 使(shi)用 DCMS/HiPIMS 复合(he)技术(shu)显著 提(ti) 高(gao)了 TiAlSiN 涂(tu) 层(ceng) 刀 具 的 切(qie) 削(xue) 性 能(neng) , DCMS/HiPIMS-TiAlSiN 涂(tu)层刀(dao)具的后刀(dao)面(mian)磨损宽度仅(jin)为(wei)67 μm 左(zuo)右(you),而(er) DCMS-TiAlSiN 涂(tu)层(ceng)刀具的(de)后刀(dao)面 磨(mo) 损(sun)宽(kuan) 度(du) 约为 108 μm。 Moirangthem 等[96] 使 用(yong)HiPIMS-MFMS 技(ji)术在(zai)室温且(qie)不(bu)施加偏(pian)压条(tiao)件(jian)下(xia)沉 积(ji)了(le)AlCrNbSiTiBN 涂层(ceng),其(qi)耐腐蚀(shi)性(xing)比(bi) AISI 304不锈钢提(ti)高(gao) 10.3 倍。近年(nian)来(lai),HiPIMS 技(ji)术与多(duo)种(zhong) 物理(li)气相沉积方法(fa)的(de)复合(he)应用逐(zhu)渐(jian)受到(dao)关注(zhu),Tang 等[97] 采(cai)用由 RF 和(he) HiPIMS-MFMS 复合(he)镀(du)膜(mo) 系(xi)统沉积的 ZrSiN涂(tu)层(ceng)将 AISI 304 不锈钢基(ji)体(ti)的(de) 耐(nai)蚀性(xing)提(ti)高了 8~15 倍(bei)。Lu 等(deng)[98] 利用(yong) DC、RF 和HiPIMS-MF 复合(he)技术,有(you)效(xiao)解(jie)决(jue)了 Ti 靶(ba)(HiPIMSMF模式(shi))中毒的问(wen)题,并(bing)获得了(le)硬度高(gao)达 34.1 GPa,平均摩(mo)擦系数低至(zhi) 0.46的(de) CrTiBN 涂(tu)层。
摩(mo)擦(ca)系数低至 0.46 的 CrTiBN 涂(tu)层。 针对(dui)极(ji)端(duan)服(fu)役环境,如高(gao)温、高压(ya)及(ji)高(gao)腐(fu)蚀等 条件,传(chuan)统材料的(de)性(xing)能往往(wang)受限。用 HiPIMS 复(fu)合 技术(shu)制(zhi)备(bei)高性(xing)能(neng)的硬(ying)质涂(tu)层,为耐(nai)磨部(bu)件(jian)在(zai)极端(duan)环(huan) 境下(xia)的应用提(ti)供(gong)了可能[99]。Qin 等(deng)[100] 采(cai)用(yong) DCMS 和(he) HiPIMS 复合技术研究(jiu)了(le) MoS2-Ti 复合涂层(ceng)的摩(mo) 擦学行为(wei),结(jie)果表明,适量 Ti(原子数(shu)约(yue) 13.5 %)的 掺入显(xian)著提(ti)升(sheng)了涂层的(de)耐(nai)磨性,涂层(ceng)的平均(jun)摩(mo)擦(ca)系(xi) 数(shu) 低至 0.04。 Zhang等[101] 采(cai) 用 DCMS/HiPIMS 复(fu) 合(he)技(ji)术制备(bei)了摩(mo)擦系(xi)数和磨损(sun)率分别低(di)至(zhi) 0.08 和(he)4.3×10−5 mm3·N−1·m−1 的 VAlN/Ag 多(duo)层涂(tu)层(ceng), Ag 层(ceng) 表现出(chu)纳米(mi)孪(luan)晶结构,经 300 ℃ 的(de)高(gao)温(wen)摩擦(ca)试验(yan)后(hou),内部相结(jie)构保(bao)持不(bu)变。Gui 等[102] 利(li)用(yong)该复合沉(chen)积(ji) 技术(shu)制备的 TiAlCrN 陶(tao)瓷涂(tu)层硬度(du) 为(wei) 28.3 GPa,摩(mo)擦试(shi)验(yan)中(zhong)在(zai)磨损(sun)轨(gui)迹(ji)处(chu)形成的(de)致密界(jie)面(mian)氧化物 层(ceng)有(you)效提升(sheng)了(le)涂层(ceng)的耐(nai)磨性(xing),磨损率(lv)低至 8.9× 10−17 m3·N−1·m−1。Lou 等(deng)[103] 报(bao)道了用 HiPIMS-MFMS复(fu)合技术制(zhi)备 nc-TiC/a-C:H 纳(na)米复(fu)合(he)涂层的研(yan)究,该(gai) 涂层具(ju)有高(gao)硬(ying)度(du)、高(gao)耐磨(mo)性(xing)以及(ji)优(you)异的(de)耐(nai)硫酸(suan)腐 蚀(shi)性能,成(cheng)为恶(e)劣(lie)环(huan)境(jing)应用中很有(you)前景(jing)的(de)防护涂层(ceng)。
将(jiang) HiPIMS 技(ji)术(shu)与(yu)其他 PVD 技(ji)术复合,能够(gou)提 高(gao)涂(tu)层(ceng)的耐磨性(xing)及(ji)耐(nai)腐(fu)蚀性,提(ti)升加工精(jing)度(du)与效率(lv),显著提升(sheng)工(gong)具(ju)和零部(bu)件(jian)的(de)使(shi)用(yong)寿命(ming),为其在极端环(huan) 境(jing)下的(de)应用提(ti)供(gong)前(qian)提条件(jian),在高端(duan)制(zhi)造(zao)方面(mian)应(ying)用潜(qian) 力巨(ju)大。
3.2 在功能(neng)涂层与器(qi)件领域(yu)的应(ying)用(yong)
HiPIMS 复合(he)技术在(zai)光伏(fu)器(qi)件及(ji)与半(ban)导体(ti)相(xiang)关(guan) 涂(tu)层的(de)制(zhi)备中(zhong)展(zhan)现(xian)出(chu)显著(zhu)优势。Lin 等(deng)[104] 采用HiPIMS/DCMS 复合(he)技术在(zai)硬质合金上(shang)沉积(ji)了(le) HfBx涂(tu)层(ceng),该涂层(ceng)具有高达 49.3 GPa±3.6 GPa 的(de)超(chao)高硬 度和(he) 667.0 GPa±9.2 GPa 的杨氏模量(liang),可(ke)用(yong)于(yu)航(hang)空(kong) 航(hang)天(tian)、热(re)光伏(fu)器(qi)件和(he)互补(bu)金属氧化(hua)物(wu)半(ban)导体(ti)。扩 散(san)屏(ping)障(zhang)是(shi)集(ji)成(cheng)电路(lu)中至关重要(yao)的组成(cheng)部分(fen),屏障(zhang)失(shi) 效会(hui)导致(zhi)扩散(san)形(xing)成(cheng)铜(tong)硅化(hua)物,严(yan)重影(ying)响(xiang)器(qi)件(jian)性能和 寿(shou)命(ming)。 Mühlbacher 等[105] 通过(guo) DCMS/HiPIMS 复(fu)合(he)技 术(shu)在(zai)无加热条(tiao)件(jian)下制备(bei)了(le) Ti0.84Ta0.16N 阻挡层(ceng),900 ℃退火(huo)后,Ti0.84Ta0.16N 涂层(ceng)中仅有(you)轻微(wei)的(de) Cu 扩(kuo)散现(xian)象(xiang),满(man)足(zu)半导(dao)体(ti)行业(ye)日(ri)益严(yan)苛的(de)温度要(yao)求(qiu)。WN 涂层(ceng)因其硬(ying)度(du)高、热(re)稳定性(xing)好、电阻(zu)率低等优(you)势,在半 导体(ti)行(xing)业(ye)中(zhong)常(chang)用(yong)作(zuo)扩(kuo)散阻挡层、电(dian)容器(qi)和(he)场效(xiao)应 晶(jing)体(ti)管(guan)(FET)中的电极(ji)防(fang)护涂层(ceng),Lou 等[106] 使用(yong)HiPIMS/MF 复合系统制(zhi)备的 WN0.12 涂(tu)层具(ju)有(you) 0.33的低摩(mo)擦系(xi)数和(he) 31.5 GPa 的(de)高(gao)硬度。
在(zai)核反应(ying)堆(dui)领(ling)域(yu),核(he)燃料(liao)后(hou)处(chu)理时(shi)相关零部件 常(chang)处(chu)于浓(nong)硝酸强腐蚀状态(tai)下(xia)。Chabanon 等(deng)[107] 在304 L 奥氏(shi)体不锈(xiu)钢(gang)上(shang)沉(chen)积的(de) Zr/ZrO2 涂层(ceng),在(zai)硝酸 介(jie)质(zhi)中(zhong)浸泡 9 天后(hou),表(biao)面无明显(xian)变化,而无(wu)涂(tu)层样品 出现晶(jing)间腐(fu)蚀,表面出现了(le)颗(ke)粒(li)和(he)裂(lie)纹(wen)。Ammendola 等[108] 通过 BP-HiPIMS 技(ji)术(shu)在 Cr-4 合金(jin)上沉(chen)积Cr 涂(tu)层,主(zhu)要应用作(zuo)核反应(ying)堆(dui)零部(bu)件,经(jing) 84 天的(de) 高(gao)压釜暴(bao)露后(hou),与(yu)无涂(tu)层(ceng)的 Cr-4 合(he)金(jin)相(xiang)比,DCMSCr涂层(ceng)样(yang)品(pin)增重(zhong)减(jian)少(shao)了 61%,而(er) HiPIMS-Cr 和(he) BPHiPIMS-Cr涂层(ceng)样品增(zeng)重(zhong)分别(bie)减少(shao)了(le) 80% 和(he) 90%。SiC 已(yi)成为轻水(shui)反应(ying)堆中(zhong)用于(yu)核(he)燃(ran)料(liao)包壳(ke)和(he)管(guan)道 箱(xiang)等(deng)核心部件(jian)材(cai)料, Mouche 等[109] 采(cai) 用 HIPIMS/ CAE 复(fu)合技术在 SiC 基体上制备 Cr 涂层,先(xian)用(yong)HiPIMS 沉积 Cr 层(ceng),再用 CAE 沉(chen)积(ji) Cr 层,显著改(gai) 善(shan)了(le)涂层(ceng)结(jie)合力(li),减少了涂(tu)层(ceng)的(de)开(kai)裂(lie)和剥(bo)落。
汽(qi)车(che)行业(ye)对涂层的热机械(xie)稳(wen)定性(xing)要求较高(gao)。 中国科学(xue)院力学所(suo)采用(yong) HiPIMS/AIP 复(fu)合技术(shu)研制(zhi) 了(le) TiCN、CrAlSiN、DLC 等系列(lie)三(san)元(yuan)、四(si)元(yuan)高硬(ying)高 温涂层,并(bing)应(ying)用于长春一汽的(de)压铸(zhu)模(mo)具(ju)、热(re)锻(duan)模(mo)具,使模(mo)具的加(jia)工寿命提(ti)高(gao) 3~5 倍(bei)以(yi)上,尤其是含(han)钇高(gao) 温涂(tu)层,实(shi)现了(le) 800~1 200 ℃ 环(huan)境下涂层(ceng)在(zai)热锻(duan)模(mo) 具上的工(gong)程应(ying)用。荷(he)兰豪(hao)泽(Hauzer)公(gong)司(si)研发的Flexicoat 1500 系(xi)统(tong)同时配备 HiPIMS、电弧(hu)和离(li)子 渗氮等(deng)六(liu)种沉(chen)积技(ji)术(shu),最大载(zai)重(zhong)可达(da) 3 000 kg。用(yong) 该(gai)系统的复合(he)技术制(zhi)备的涂层用在(zai)水龙头、淋(lin)浴(yu) 喷头等卫浴五(wu)金(jin)件(jian)上(shang),能(neng)有效减少(shao)指(zhi)纹(wen)残留,保持(chi) 五金件表(biao)面清(qing)洁(jie)亮(liang)丽,减(jian)少(shao)清(qing)洁(jie)维护(hu)的频(pin)率(lv);用在(zai) 汽车发动(dong)机等(deng)零(ling)部(bu)件上,能(neng)减少(shao)热(re)传(chuan)导,有(you)助(zhu)于(yu)降 低发(fa)动(dong)机(ji)的(de)工作(zuo)温度(du),减(jian)少(shao)燃油消(xiao)耗(hao);用在大尺寸 成型(xing)模具(ju)上(shang),能减(jian)少(shao)被(bei)加(jia)工(gong)材(cai)料在(zai)模(mo)具表面(mian)的黏附,简(jian)化(hua)清(qing)理(li)过程,提(ti)高(gao)生(sheng)产效(xiao)率(lv),减(jian)少模(mo)具在生(sheng)产过 程(cheng)中(zhong)的(de)磨(mo)损(sun),延(yan)长模(mo)具(ju)寿命,降低更换(huan)成(cheng)本(ben)。Carlos等[110] 使(shi)用 HiPIMS 和(he) DC 偏(pian)压(ya)技(ji)术优(you)化(hua) Nb/Cu 涂(tu) 层(ceng)性能(neng)。研究发(fa)现(xian),较高的(de)直流(liu)电压可以改(gai)善(shan)入(ru)射 离子(zi)通量(liang)的方向(xiang)性(xing),增(zeng)强(qiang)吸附原子迁(qian)移(yi)率,消(xiao)除(chu)涂(tu) 层沉(chen)积(ji)过(guo)程中的自(zi)阴影效(xiao)应,制备出表(biao)面(mian)平滑致密(mi) 的(de)涂(tu)层,他们认为该(gai)技(ji)术可(ke)应(ying)用于射(she)频(pin)超(chao)导(dao)腔(qiang)。
HiPIMS 复(fu)合技(ji)术(shu)在(zai)功(gong)能涂(tu)层(ceng)与器(qi)件(jian)领(ling)域(yu)展(zhan)现(xian) 出显著优(you)势,能够有效提升(sheng)材料表面平(ping)滑度和硬(ying)度、耐(nai)磨(mo)性(xing)、耐(nai)腐蚀性(xing)等,广(guang)泛应(ying)用(yong)于光(guang)伏(fu)器(qi)件(jian)及核(he)反(fan) 应(ying)堆(dui)零部(bu)件用涂层(ceng)等(deng)领域(yu),在国防军工等(deng)跨学科领(ling) 域(yu)有较(jiao)大(da)应(ying)用(yong)潜力(li)。
3.3 HiPIMS 复(fu)合(he)技(ji)术(shu)展望
随(sui)着环(huan)境污染(ran)的不(bu)断(duan)加剧(ju),环(huan)境(jing)净(jing)化(hua)涂层材(cai)料(liao) 的(de)研(yan)发(fa)与应(ying)用已(yi)成(cheng)为(wei)环保技(ji)术领(ling)域(yu)的重(zhong)要研(yan)究(jiu)方(fang) 向(xiang)。光催化环境(jing)净(jing)化(hua)技(ji)术(shu)是(shi)一(yi)种利用(yong)光(guang)催(cui)化剂在 光照条件(jian)下(xia)分解或(huo)转(zhuan)化(hua)有害(hai)物质(zhi)的技(ji)术,具有绿色、环保(bao)、高(gao)效节(jie)能(neng)等优势(shi)。Zinai 等(deng)[111] 使用(yong) HiPIMS技(ji)术(shu)在(zai) Si 基(ji)体(ti)上(shang)制备(bei) TiO2 涂(tu)层(ceng),并研(yan)究(jiu)了(le)其(qi)光(guang)学性(xing)能,结果(guo)表明(ming):与无涂层 Si 基(ji)体(ti)相(xiang)比(bi),涂(tu)覆 TiO2涂(tu)层的(de) Si 基(ji)体(ti)在 300~1 200 nm 波长范(fan)围内(nei)反射(she)率(lv) 显著下(xia)降(jiang);无(wu)涂(tu)层(ceng) Si 样(yang)品(pin)的紫(zi)外(wai)线(xian)阻(zu)挡比例(li)约为40%,而涂(tu)覆 TiO2 防(fang)护(hu)层(ceng)的 Si 样(yang)品紫外(wai)线阻(zu)挡比 例约 21%,从(cong)而(er)在硅太(tai)阳能电(dian)池上达到良(liang)好的(de)抗反 射(she)和(he)防(fang)紫(zi)外线效果(guo)。Abidi 等(deng)[112] 使(shi)用(yong) HiPIMS 技(ji)术 在(zai)涤纶布(bu)上(shang)制备了CuxO/TiO2 光(guang)催化(hua)剂涂层(ceng),在(zai)日(ri) 光(guang)照(zhao)射下,该涂层(ceng)对高(gao)浓度(du)的(de)三氯甲(jia)烷和(he)丁(ding)醛(quan)的(de)降(jiang) 解效率(lv)分(fen)别(bie)达到 90%和(he) 85%,同时具(ju)有(you)较高(gao)的抑 菌活性。在(zai) 80 A 溅(jian)射条(tiao)件(jian)下(xia)制(zhi)备的(de) CuxO/TiO2 光 催化(hua)涂层在 2 h 内实(shi)现(xian)了(le)细(xi)菌的完全(quan)灭(mie)活,可应用(yong) 于(yu)在室内(nei)空气(qi)中净(jing)化(hua)纺织品。Ratova 等[113] 采用HiPIMS 技术将(jiang) W 元(yuan)素(su)掺(can)杂(za)在TiO2 涂(tu)层中,并(bing)通(tong)过(guo) 亚甲基蓝染料(liao)的降解率评估(gu)其光催(cui)化(hua)活(huo)性(xing),结果表 明,尽(jin)管在(zai)紫(zi)外(wai)光(guang)照射下未(wei)观察到光(guang)催化(hua)活性的显 著提升,但(dan)在(zai)荧(ying)光灯和(he)可见光条(tiao)件(jian)下(xia),该涂层表(biao)现 出(chu)对亚(ya)甲基(ji)蓝的很强(qiang)的(de)降解能力,为室内光催(cui)化(hua)应 用提(ti)供了(le)有力(li)支(zhi)持(chi)。在(zai)医(yi)疗(liao)领(ling)域(yu),HfO2 涂层常用(yong) 作高性(xing)能扩(kuo)展(zhan)栅(zha)场(chang)效(xiao)应(ying)晶体(ti)管(guan),用于检(jian)测(ce)阿(a)尔(er)茨 海(hai)默症等(deng)与帕(pa)金森(sen)相(xiang)关的 pH 值(zhi)和(he)蛋白质(zhi),目前(qian)主 要采(cai)用 HiPIMS 技(ji)术(shu)制(zhi)备该(gai)涂层(ceng),未来期望(wang)采用HiPIMS 复合技术(shu)优化(hua) HfO2 生(sheng)物(wu)传(chuan)感器涂(tu)层的(de)稳 定(ding)性和 pH 检测(ce)中(zhong)的(de)灵(ling)敏度(du),使(shi)该生物传感器应用 于(yu)检(jian)测(ce)其他(ta)蛋(dan)白(bai)质(zhi)型(xing)生物标志(zhi)物(wu),并构建多(duo)传(chuan)感(gan)器 阵(zhen)列(lie),用(yong)于(yu)早期(qi)筛(shai)查患者(zhe)[114]。在过去(qu)的十(shi)年(nian)中(zhong),对 用于(yu)生(sheng)物医(yi)学应用的涂(tu)层材(cai)料(liao)的需求有(you)了(le)巨大的(de) 增长(zhang),例(li)如骨科植入物(wu)、牙(ya)根(gen)、心血管支(zhi)架(jia)、心(xin)脏 瓣膜(mo)和(he)其(qi)他外科器械(xie)以及(ji)药(yao)物缓(huan)释(shi)涂(tu)层等(deng)。目(mu)前,HiPIMS 技术已被应用(yong)于(yu)制(zhi)备多种生物医(yi)学涂层,包括(kuo) DLC、NbO、NiTi 和(he) TiOxNy 等(deng)[115-116],在未(wei)来的 技(ji)术(shu)发展(zhan)与更新(xin)迭(die)代中,利(li)用 HiPIMS 复(fu)合(he)技(ji)术有(you) 望制(zhi)备高(gao)纯度高性(xing)能的涂层,在新(xin)能源(yuan)和医(yi)疗(liao)等(deng)跨(kua) 学科(ke)领(ling)域(yu)应(ying)用(yong)中发挥作用。
随(sui)着技术的不(bu)断(duan)进步(bu),未(wei)来(lai) HiPIMS 复合(he)技(ji)术(shu) 有望(wang)实现(xian)更加(jia)精(jing)细(xi)的(de)脉(mai)宽(kuan)控(kong)制(zhi)。通过(guo)精确(que)调(diao)节脉 冲(chong)持(chi)续时(shi)间(jian),进(jin)一(yi)步优化等(deng)离子体(ti)的(de)密(mi)度(du)和能(neng)量(liang)分 布(bu),从而(er)提高(gao)涂层的沉(chen)积质(zhi)量和一致(zhi)性(xing)。另外(wai),通 过(guo)不同(tong)电(dian)源(yuan)的匹配(pei)复(fu)合系统提(ti)高(gao)电源的(de)效率和(he)稳 定性(xing) ,从(cong)而(er)使(shi) HiPIMS 放电过程更稳定(ding)。
4、总(zong)结(jie)与(yu)展(zhan)望
HiPIMS 技术作为材料(liao)表面(mian)改(gai)性(xing)领(ling)域的(de)一(yi)项关(guan) 键(jian)性(xing)创新成(cheng)果,促(cu)进了(le)材(cai)料(liao)性能提(ti)升(sheng)和(he)新型功(gong)能材(cai) 料(liao)的(de)研发(fa),但(dan)其(qi)低的沉积速率限制(zhi)了其(qi)发展(zhan)应用。
为(wei)克服(fu)其(qi)局(ju)限性,研(yan)究(jiu)者(zhe)们采用波形(xing)叠(die)加(jia)和同(tong)步偏 压(ya)等技(ji)术(shu)对其(qi)优(you)化(hua),通过与(yu)其(qi)他技(ji)术(shu)的复(fu)合和增加 辅助装置(zhi)进(jin)行不断改进(jin),均在(zai)一定程度上(shang)提高了沉 积(ji)速(su)率(lv),并(bing)改(gai)善了涂(tu)层性(xing)能(neng)。未(wei)来对(dui)于 HiPIMS 复 合(he)技术的(de)进一步(bu)研究,应聚(ju)焦于通(tong)过(guo)调(diao)控(kong)电(dian)源模(mo)式 及(ji)脉(mai)冲(chong)相(xiang)关(guan)参数来(lai)提(ti)高 HiPIMS 复合技术的(de)稳定(ding) 性,降低(di)成本,解决离(li)化率(lv)损(sun)失(shi)和工艺(yi)复(fu)杂等难(nan)题(ti)。 在保证高(gao)沉积速(su)率条件(jian)下(xia)如(ru)何(he)有(you)效调(diao)控真(zhen)空(kong)室内 等离(li)子体,仍(reng)是该技(ji)术工业(ye)化(hua)推广应用(yong)的研究热(re)点(dian)。 另外,未来(lai)发展的(de)方(fang)向(xiang)还包(bao)括(kuo)其在特定(ding)领域的跨(kua)学(xue) 科应(ying)用,以(yi)推(tui)动(dong)该(gai)技术(shu)向(xiang)更高(gao)水(shui)平发展(zhan)。
参(can)考(kao)文(wen)献(xian):
[1]DAS S,BISWAS S K,KUNDU A,et al. Investigation of mechanical morphological structural and electrochemical properties of PVD TiAlN coating:A detail experimental and its correlation with an analytical approach using the least square method[J]. Applied Surface Science Advances, 2024, 24:100638.
[2]BOBZIN K,KALSCHEUER C,MÖBIUS M P. Triboactive CrAlN+MoWS coatings deposited by pulsed arc PVD[J]. Surface and Coatings Technology,2023,475:130178.
[3]吴忠振(zhen),朱宗涛,巩(gong)春志,等(deng). 高功率(lv)脉(mai)冲(chong)磁(ci)控溅射技(ji)术的 发展(zhan)与研究 [J]. 真(zhen)空,2009,46(3):18−22.
[4]KOUZNETSOV V,MACÁK K,SCHNEIDER J M,et al. A novel pulsed magnetron sputter technique utilizing very high target power densities[J]. Surface and Coatings Technology,1999,122(2/3):290−293.
[5]MACÁK K,KOUZNETSOV V,SCHNEIDER J,et al. Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge[J]. Journal of Vacuum Science and Technology,2000,18(4):1533−1537.
[6]BOHLMARK J, GUDMUNDSSON J T, ALAMI J, et al. Spatial electron density distribution in a high-power pulsed magnetron discharge[J]. IEEE Transactions on Plasma Science,2005,33(2):346−347.
[7]ANDERS A. Discharge physics of high power impulse magnetron sputtering[J]. Surface and Coatings Technology,2011,205:S1−S9.
[8]NAKANO T,MURATA C,BABA S. Effect of the target bias voltage during off-pulse period on the impulse magnetron sputtering[J]. Vacuum,2010,84(12):1368−1371.
[9]KERAUDY J,VILOAN R P B,RAADU M A,et al. Bipolar HiPIMS for tailoring ion energies in thin film deposition[J]. Surface and Coatings Technology,2019,359:433−437.
[10]朱祥瑞(rui),韩明月,冯蓬勃,等(deng). 双(shuang)极(ji)高功(gong)率(lv)脉(mai)冲磁控溅射(she)技 术(shu)薄膜制备(bei)研究(jiu)进(jin)展 [J]. 中国表(biao)面(mian)工(gong)程,2022,35(5):10−22.
[11]吴厚(hou)朴(pu),田(tian)钦(qin)文(wen),田(tian)修(xiu)波,等(deng). 新型双(shuang)极(ji)性(xing)高(gao)功率(lv)脉(mai)冲(chong)磁(ci)控(kong) 溅(jian)射电(dian)源(yuan)及放电(dian)特性研(yan)究(jiu) [J]. 真(zhen)空(kong),2019,56(6):1−6.
[12]ZHAO M J,WANG Y T,YAN J H,et al. Dielectric properties of hafnium oxide film prepared by HiPIMS at different O2/Ar ratios and their influences on TFT performance[J]. Journal of Science:Advanced Materials and Devices,2024,9(2):100722.
[13]王启(qi)民,张小(xiao)波(bo),张世宏(hong),等. 高功(gong)率脉(mai)冲(chong)磁控(kong)溅射技(ji)术(shu)沉 积(ji)硬质涂层(ceng)研(yan)究(jiu)进展 [J]. 广(guang)东(dong)工(gong)业大(da)学(xue)学报(bao), 2013,30(4):1−13.
[14]刘亮亮,周林(lin),唐伟(wei),等. 持(chi)续(xu)高功(gong)率磁(ci)控(kong)溅射(she)技术(shu)高(gao)速 制(zhi)备挠(nao)性覆铜(tong)板(ban) Cu 膜 [J]. 真空(kong)与(yu)低(di)温,2020, 26(5):369−376.
[15]FERREC A,KERAUDY J,JACQ S,et al. Correlation between mass-spectrometer measurements and thin film characteristics using dcMS and HiPIMS discharges[J]. Surface and Coatings Technology,2014,250:52−56.
[16]BOBZIN K,BRÖGELMANN T,KRUPPE N C,et al. Influence of dcMS and HPPMS in a dcMS/HPPMS hybrid process on plasma and coating properties[J]. Thin Solid Films,2016,620:188−196.
[17]YING P Y,SUN H Y,ZHANG P,et al. Preparation and tribological properties of WS2 solid lubricating coating with dense structure using HiPIMS[J]. Journal of Materials Research and Technology,2024,32:530−540.
[18]WANG Z,LI W T,WANG Z Y,et al. Comparative study on protective Cr coatings on nuclear fuel cladding Zirlo substrates by AIP and HiPIMS techniques[J]. Ceramics International,2023,49(14):22736−22744.
[19]RECK K A,BULUT Y, XU Z J, et al. Early-stage silver growth during sputter deposition on SiO2 and polystyrene– comparison of biased DC magnetron sputtering,high-power impulse magnetron sputtering (HiPIMS) and bipolar HiPIMS [J]. Applied Surface Science,2024,666:160392.
[20]CHO M G,KANG U,LIM S H,et al. α-phase tantalum film deposition using bipolar high-power impulse magnetron sputtering technique[J]. Thin Solid Films,2023,767:139668.
[21]ALHAFIAN M R,CHEMIN J B,FLEMING Y,et al. Comparison on the structural,mechanical and tribological properties of TiAlN coatings deposited by HiPIMS and Cathodic Arc Evaporation[J].Surface and Coatings Technology,2021, 423:127529.
[22]KIRYUKHANTSEV-KORNEEV P V,CHERTOVA A D,CHUDARIN F I,et al. The structure and properties of highentropy (MoTaNbZrHf)-Si-B coatings deposited by DCMS and HIPIMS methods using the multilayer target[J]. Surface and Coatings Technology,2024,484:130797.
[23]LI Z C,ZHOU G X,WANG Z Y,et al. HiPIMS induced high-purity Ti3AlC2 MAX phase coating at low-temperature of 700 ℃[J]. Journal of the European Ceramic Society,2023,43(11):4673−4683.
[24]KUBART T,FERNANDES D F,NYBERG T. On the description of metal ion return in reactive high power impulse magnetron sputtering[J]. Surface and Coatings Technology,2021,418:127234.
[25]ANDERS A. Deposition rates of high power impulse magnetron sputtering:Physics and economics[J]. Journal of Vacuum Science and Technology A,2010,28(4):783−790.
[26]BAI X B, CAI Q, XIE W H, et al. Effect of ion control strategies on the deposition rate and properties of copper films in bipolar pulse high power impulse magnetron sputtering[J]. Journal of Materials Science,2023,58(3):1243− 1259.
[27]KOZÁK T. Particle-based simulation of atom and ion transport in HiPIMS:Effect of the plasma potential distribution on the ionized flux fraction[J]. Plasma Sources Science and Technology,2023,32(3):035007.
[28]KOZÁK T,LAZAR J. Gas rarefaction in high power impulse magnetron sputtering:Comparison of a particle simulation and volume-averaged models[J]. Plasma Sources Science and Technology,2018,27(11):115012.
[29]TIRON V,VELICU I L,MIHĂILĂ I,et al. Deposition rate enhancement in HiPIMS through the control of magnetic field and pulse configuration[J]. Surface and Coatings Technology,2018,337:484−491.
[30]TILLMANN W,ONTRUP F,SCHNEIDER E,et al. Comparative investigation of the structure and mechanical properties of AlCrN and AlCrVYN thin films deposited by dcMS,HiPIMS, and hybrid dcMS/HiPIMS[J]. Hybrid Advances,2024,5:100120.
[31]PATIDAR J,SHARMA A,ZHUK S,et al. Improving the crystallinity and texture of oblique-angle-deposited AlN thin films using reactive synchronized HiPIMS[J]. Surface and Coatings Technology,2023,468:129719.
[32]CEMIN F, ABADIAS G, MINEA T, et al. Tuning high power impulse magnetron sputtering discharge and substratebias conditions to reduce the intrinsic stress of TiN thin films[J]. Thin Solid Films,2019,688:137335.
[33]YANG Y C,CHANG C T,HSIAO Y C,et al. Influence of high power impulse magnetron sputtering pulse parameters on the properties of aluminum nitride coatings[J]. Surface and Coatings Technology,2014,259:219−231.
[34] LI H,LI L H,WANG X T,et al. Effect of bias voltage on the erosion performance of TiAlSiN coatings on TC6 substrate by high power impulse magnetron sputtering[J]. Surface and Coatings Technology,2024,477:130263.
[35] DAS C R,RANGWALA M,GHOSH A. Characteristics of high-power impulse magnetron sputtering (HiPIMS) deposited nanocomposite-TiAlSiN coating under variable pulse frequencies[J]. Vacuum,2024,219:112747.
[36] WANG L,JIN J,ZHU C K,et al. Effects of HiPIMS pulselength on plasma discharge and on the properties of WC-DLC coatings[J]. Applied Surface Science,2019,487:526−538.
[37] TIRON V,VELICU I L,MATEI T,et al. Ultra-short pulse HiPIMS:A strategy to suppress arcing during reactive deposition of SiO2 thin films with enhanced mechanical and optical properties[J]. Coatings,2020,10(7):633.
[38] BRADLEY J W,MISHRA A, KELLY P J. The effect of changing the magnetic field strength on HiPIMS deposition rates[J]. Journal of Physics D: Applied Physics, 2015,48(21):215202.
[39] GHAILANE A,LARHLIMI H,TAMRAOUI Y,et al. The effect of magnetic field configuration on structural and mechanical properties of TiN coatings deposited by HiPIMS and dcMS[J].Surface and Coatings Technology,2020,404:126572.
[40] TIRON V,VELICU I L,VASILOVICI O,et al. Optimization of deposition rate in HiPIMS by controlling the peak target current[J]. Journal of Physics D: Applied Physics,2015,48(49):495204.
[41] VETTER J, SHIMIZU T, KURAPOV D, et al. Industrial application potential of high power impulse magnetron sputtering for wear and corrosion protection coatings[J].Journal of Applied Physics,2023,134:160701.
[42] SERRA R,FERREIRA F,CAVALEIRO A,et al. HiPIMS pulse shape influence on the deposition of diamond-like carbon films[J]. Surface and Coatings Technology,2022,432:128059.
[43] OSKIRKO V O,KOZHEVNIKOV V Y,RABOTKIN S V,et al. Ion current density on the substrate during short-pulse HiPIMS[J]. Plasma Sources Science and Technology,2023, 32(7):075007.
[44]ANTONIN O,TIRON V,COSTIN C,et al. On the HiPIMS benefits of multi-pulse operating mode [J]. Journal of Physics D:Applied Physics,2014,48(1):015202.
[45] LIN J,ZHANG X. Effects of racetrack magnetic field strength on structure and properties of amorphous carbon coatings deposited by HiPIMS using deep oscillation pulses[J]. Surface and Coatings Technology,2022,438:128417.
[46] ELIASSON H,RUDOLPH M,BRENNING N,et al. Modeling of high power impulse magnetron sputtering discharges with graphite target[J]. Plasma Sources Science and Technology,2021,30(11):115017.
[47] LI L H,GU J B,XU Y,et al. Application of positive pulse to extract ions from HiPIMS ionization region[J]. Vacuum,2022,204:111383.
[48] SANTIAGO J A,FERNÁNDEZ-MARTÍNEZ I,KOZÁK T,et al. The influence of positive pulses on HiPIMS deposition of hard DLC coatings[J]. Surface and Coatings Technology,2019,358:43−49.
[49] OSKIRKO V O,ZAKHAROV A N,SEMENOV V A,et al. Short-pulse high-power dual magnetron sputtering[J]. Vacuum,2022,200:111026.
[50] HUO C Q,RAADU M A,LUNDIN D,et al. Gas rarefaction and the time evolution of long high-power impulse magnetron sputtering pulses[J]. Plasma Sources Science and Technology,2012,21(4):045004.
[51] GRECZYNSKI G,ZHIRKOV I,PETROV I,et al. Gas rarefaction effects during high power pulsed magnetron sputtering of groups IVb and VIb transition metals in Ar[J]. Journal of Vacuum Science and Technology A, 2017, 35(6):060601.
[52] GUI B H,HU H J,ZHOU H,et al. Influence of synchronized pulse bias on the microstructure and properties of CrSiN nano-composite ceramic films deposited by MIS-HiPIMS[J]. Ceramics International,2024,50(7):31576−31588.
[53]李(li)春伟,苗红涛(tao),徐(xu)淑(shu)艳(yan),等. 复合高(gao)功(gong)率脉冲磁控(kong)溅射(she)技(ji) 术(shu)的研(yan)究进(jin)展(zhan)[J]. 表面技(ji)术(shu),2016,45(6):82−90.
[54]葛敏,刘(liu)艳(yan)梅,李壮,等. N2 流(liu)量比(bi)对(dui) AlCrMoSiN 涂层组(zu) 织(zhi)结构和性(xing)能的(de)影响 [J]. 装(zhuang)备环(huan)境(jing)工程(cheng),2023,20(3):108−116.
[55] MUSIL J, KADLEC S, MÜNZ W D. Unbalanced magnetrons and new sputtering systems with enhanced plasma ionization[J]. Journal of Vacuum Science and Technology,1991,9(3):1171−1177.
[56] STRANAK V,HUBICKA Z,CADA M,et al. Investigationof ionized metal flux in enhanced high power impulse magnetron sputtering discharges[J]. Journal of Applied Physics,2014,115:153301.
[57]KRÝSOVÁ H,CICHOŇ S,KAPRAN A,et al. Deposition of Fe2O3: Sn semiconducting thin films by reactive pulsed HiPIMS+ ECWR co-sputtering from Fe and Sn targets[J].Journal of Photochemistry and Photobiology A:Chemistry,2024,454:115676.
[58] HAIN C,BROWN D,WELSH A,et al. From pulsed-DCMS and HiPIMS to microwave plasma-assisted sputtering:Their influence on the properties of diamond-like carbon films[J]. Surface and Coatings Technology,2022,432:127928.
[59] LI C W,TIAN X B,GONG C Z,et al. Synergistic enhancement effect between external electric and magnetic fields during high power impulse magnetron sputtering discharge[J].Vacuum,2017,143:119−128.
[60] LI C W,TIAN X B,GONG C Z,et al. The improvement of high power impulse magnetron sputtering performance by an external unbalanced magnetic field[J]. Vacuum,2016,133:98−104.
[61] LI C W,TIAN X B,GONG C Z,et al. Electric and magnetic fields synergistically enhancing high power impulse magnetron sputtering deposition of vanadium coatings[J]. Vacuum,2017,144 :125−134.
[62] TIAN X B,MA Y H,HU J,et al. Microstructure and mechanical properties of (AlTi)xN1-x films by magnetic-field-enhanced high power impulse magnetron sputtering[J]. Journal of Vacuum Science and Technology A,2017,35(2):21402.
[63] HNILICA J, KLEIN P, UČÍK M, et al. On direct-current magnetron sputtering at industrial conditions with high ionization fraction of sputtered species[J]. Surface and Coatings Technology,2024,487:131028.
[64]王重阳(yang),刘(liu)艳(yan)梅(mei),阎兵,等. 调制周(zhou)期(qi)对(dui)AlCrSiN/AlCrMoSiN多(duo)层(ceng)膜(mo)微(wei)结(jie)构和(he)性(xing)能的影(ying)响 [J]. 表面(mian)技术,2024,53(15):57−67.
[65] HSU T W,GRECZYNSKI G,BOYD R,et al. Influence of Si content on phase stability and mechanical properties of TiAlSiN films grown by AlSi-HiPIMS/Ti-DCMS co-sputtering [J]. Surface and Coatings Technology, 2021, 427:127661.
[66] HSU T W,GRECZYNSKI G, BOYD R, et al. Dense and hard TiWC protective coatings grown with tungstenion irradiation using WC-HiPIMS/TiC-DCMS co-sputtering technique without external heating[J].Applied Surface Science,2023,618:156639.
[67] LIU Y S,AI X,HUANG J L,et al. The microstructure and mechanical properties of He charged Al films fabricated by HiPIMS/DCMS co-sputtering[J]. Vacuum, 2024, 219:112744.
[68] DIAS N F L,MEIJER A L,BIERMANN D,et al. Structure and mechanical properties of TiAlTaN thin films deposited by dcMS, HiPIMS, and hybrid dcMS/HiPIMS[J]. Surface and Coatings Technology,2024,487:130987.
[69] DING X Y,CUI M H,LIAN Y,et al. Control of the preferential orientation and properties of HiPIMS and DCMS deposited chromium coating based on bias voltage[J]. Vacuum,2024,227:113386.
[70] ZOITA N C,DINU M,KISS A E,et al. A comparative investigation of hetero-epitaxial TiC thin films deposited by magnetron sputtering using either hybrid DCMS/HiPIMS or reactive DCMS process[J]. Applied Surface Science,2021,537:147903.
[71] WU Z T,WANG Q M,PETROV I,et al. Cubic-structure Alrich TiAlSiN thin films grown by hybrid high-power impulse magnetron co-sputtering with synchronized Al+ irradiation[J]. Surface and Coatings Technology,2020,385:125364.
[72] TILLMANN W,GRISALES D,STANGIER D,et al. Influence of the etching processes on the adhesion of TiAlN coatings deposited by DCMS, HiPIMS and hybrid techniques on heat treated AISI H11[J]. Surface and Coatings Technology,2019,378:125075.
[73] TILLMANN W,GRISALES D,TOVAR C M,et al. Tribological behaviour of low carbon-containing TiAlCN coatings deposited by hybrid (DCMS/HiPIMS) technique[J]. Tribology International,2020,151:106528.
[74] WICHER B,PSHYK O V,LI X,et al. Superhard oxidationresistant Ti1-xAlxBy thin films grown by hybrid HiPIMS/ DCMS co-sputtering diboride targets without external substrate heating[J]. Materials and Design,2024,238:112727.
[75] GRECZYNSKI G,PATSCHEIDER J,LU J,et al.Control of Ti1−xSixN nanostructure via tunable metal-ion momentum transfer during HIPIMS/DCMS co-deposition[J]. Surface and Coatings Technology,2015,280:174−184.
[76] JHA S,SINGH V,KUMAR V,et al. Microstructure,wettability,cavitation and corrosion performance of aluminum(Al6061) coated with RF-sputtered AlN thin film[J]. Surface and Coatings Technology,2024,489:131168.
[77] DIYATMIKA W,CHENG C Y,LEE J W. Fabrication of Cr-Si-N coatings using a hybrid high-power impulse and radio-frequency magnetron co-sputtering:The role of Si incor-poration and duty cycle[J]. Surface and Coatings Technology,2020,403:126378.
[78]HOLTZER N,ANTONIN O,MINEA T, et al. Improving HiPIMS deposition rates by hybrid RF/HiPIMS co-sputtering,and its relevance for NbSi films[J]. Surface and Coatings Technology,2014,250:32−36.
[79]叶谱生,王(wang)启民(min),张腾飞,等(deng). Ni掺(can)杂对 TiB2 硬质(zhi)涂(tu)层组 织(zhi)结构(gou)和(he)力学(xue)性(xing)能的影响(xiang) [J]. 材料保(bao)护(hu),2023,56(12):25−35.
[80] LOU B S,YANG Y C,QIU Y X,et al. Hybrid high power impulse and radio frequency magnetron sputtering system for TiCrSiN thin film depositions: Plasma characteristics and film properties[J]. Surface and Coatings Technology,2018,350:762−772.
[81]OSKIRKO V O,ZAKHAROV A N,PAVLOV A P,et al. Hybrid HIPIMS+MFMS power supply for dual magnetron sputtering systems[J]. Vacuum,2020,181:109670.
[82]MOIRANGTHEM I, CHEN S H, LOU B S, et al. Microstructural,mechanical and optical properties of tungsten oxide coatings fabricated using superimposed HiPIMS-MF systems [J]. Surface and Coatings Technology, 2022, 436:128314.
[83] CHUANG T H,WEN C K,CHEN S C,et al. P-type semitransparent conductive NiO films with high deposition rate produced by superimposed high power impulse magnetron sputtering [J]. Ceramics International,2020,46(17):27695− 27701.
[84] LOU B S,ANNALAKSHMI M, SU Y W, et al. Fabrication of TiN coatings using superimposed HiPIMS and MF technique:Effect of target poisoning ratios and MF/HiPIMS pulse on-time ratio[J]. Surface and Coatings Technology,2024,478:130364.
[85] FERREIRA M P,MARTÍNEZ-MARTÍNEZ D,CHEMIN J B,et al. Tuning the characteristics of Al2O3 thin films using different pulse configurations:Mid-frequency,high-power impulse magnetron sputtering, and their combination[J]. Surface and Coatings Technology,2023,466:129648.
[86]KMENT S,KRYSOVA H,HUBICKA Z, et al. Very thin thermally stable TiO2 blocking layers with enhanced electron transfer for solar cells[J]. Applied Materials Today,2017,9:122-129.
[87]CHANG C L,LO K C,YANG F C,et al. HiPIMS co-sputtering for the increase of the mechanical properties of arc deposited TiN coatings[J]. Journal of Materials Research and Technology,2023,26:2050−2059.
[88]CHANG C L,LUO G J,YANG F C,et al. Effects of duty cycle on microstructure of TiN coatings prepared using CAE/HiPIMS[J]. Vacuum,2021,192:110449.
[89]SINGH A, GHOSH S, ARAVINDAN S. Investigation of oxidation behaviour of AlCrN and AlTiN coatings deposited by arc enhanced HIPIMS technique[J]. Applied Surface Science,2020,508:144812.
[90]DING J C,ZHANG T F,WANG Q M, et al. Microstructure and mechanical properties of the Cr-Mo-Si-N nanocomposite coatings prepared by a hybrid
system of AIP and HiPIMS technologies[J]. Journal of Alloys and Compounds,2018,740:774−783.
[91]GENG D S,XU Y X,WANG Q M. Hybrid deposition of Cr-O/Al-O hard coatings combining cathodic arc evaporation and high power impulse magnetron sputtering[J]. Surface and Coatings Technology,2023,456:129235.
[92]王(wang)启民,彭(peng)滨(bin),许(xu)雨翔(xiang). 面(mian)向切(qie)削(xue)刀具(ju)的物(wu)理气相沉积涂 层回顾(gu)与展望[J]. 广(guang)东工业大(da)学(xue)学(xue)报(bao),2023,40(6):12−31.
[93]王(wang)铁钢(gang),张(zhang)姣(jiao)姣,阎(yan)兵(bing). 刀(dao)具涂层的(de)研究(jiu)进(jin)展(zhan)及(ji)最(zui)新制(zhi)备 技(ji)术 [J]. 真空(kong)科学(xue)与(yu)技(ji)术学(xue)报(bao),2017,37(7):727−738.
[94] GANESAN R,FERNANDEZ-MARTINEZ I,AKHAVAN B,et al. Pulse length selection in bipolar HiPIMS for high deposition rate of smooth,hard amorphous carbon films[J]. Surface and Coatings Technology,2023,454:129199.
[95] TILLMANN W, MEIJER A L, PLATT T, et al. Cutting performance of TiAlN-based thin films in micromilling highspeed steel AISI M3∶2[J]. Manufacturing Letters,2024,40:6−10.
[96] MOIRANGTHEM I,WANG C J,LOU B S,et al. Effects of titanium and boron alloying with non-equimolar AlCrNbSiTi high entropy alloy nitride coatings[J]. Surface and Coatings Technology,2024,482:130709.
[97] TANG Q L,WU Y C,LOU B S,et al. Mechanical property evaluation of ZrSiN films deposited by a hybrid superimposed high power impulse-medium frequency sputtering and RF sputtering system[J]. Surface and Coatings Technology,2019,376:59−67.
[98] LU C Y,DIYATMIKA W,LOU B S,et al. Superimposition of high power impulse and middle frequency magnetron sputtering for fabrication of CrTiBN multicomponent hard coatings [J]. Surface and Coatings Technology, 2018, 350:962−970.
[99]王浪(lang)平,孙(sun)田玮. 液(ye)态靶材(cai)磁(ci)控溅射(she)技(ji)术研(yan)究(jiu)进(jin)展 [J]. 真 空(kong)与(yu)低温,2024,30(5):496−503.
[100] QIN X P,KE P L,WANG A Y,et al. Microstructure,mechanical and tribological behaviors of MoS2-Ti composite coatings deposited by a hybrid HIPIMS method[J]. Surface and Coatings Technology,2013,228:275−281.
[101]ZHANG Y P,WANG Z Y,ZHOU S H,et al. Synergistic effect of V and Ag diffusion favored the temperatureadaptive tribological behavior of VAlN/Ag multi-layer coating[J]. Tribology International,2024,192:109285.
[102]GUI B H,ZHOU H,ZHENG J,et al. Microstructure and properties of TiAlCrN ceramic coatings deposited by hybrid HiPIMS/DC magnetron co-sputtering[J]. Ceramics International,2021,47(6):8175−8183.
[103] LOU B S,HSIAO Y T,CHANG L C,et al. The influence of different power supply modes on the microstructure,mechanical,and corrosion properties of nc-TiC/a-C:H nanocomposite coatings[J]. Surface and Coatings Technology,2021,422:127512.
[104]LIN H S,WANG C Y,LAI Z W,et al. Microstructure and mechanical properties of HfBx coatings deposited on cemented carbide substrates by HiPIMS and DCMS[J]. Surface and Coatings Technology,2023,452:129119.
[105] MÜHLBACHER M,GRECZYNSKI G,SARTORY B,et al. Enhanced Ti0.84Ta0.16N diffusion barriers ,grown by a hybrid sputtering technique with no substrate heating, between Si(001)wafers and Cu overlayers[J]. Scientific Reports,2018,8(1):5360.
[106]LOU B S,MOIRANGTHEM I,LEE J W. Fabrication of tungsten nitride thin films by superimposed HiPIMS and MF system:Effects of nitrogen flow rate[J]. Surface and Coatings Technology,2020,393:125743.
[107]CHABANON A, SCHLEGEL M L, MICHAU A, et al. Anticorrosion performance of a Zr-based architectured substrate/coating system[J]. Corrosion Science,2023,220:111305.
[108]AMMENDOLA M,ARONSON B,FOURSPRING P,et al. Evaluation of chromium coatings deposited by standard and bipolar high-power impulse magnetron sputtering (HiPIMS & B-HiPIMS) for nuclear power applications[J]. Surface and Coatings Technology,2024,485:130835.
[109] MOUCHE P A,KOYANAGI T,PATEL D,et al. Adhesion,structure, and mechanical properties of Cr HiPIMS and cathodic arc deposited coatings on SiC[J]. Surface and Coatings Technology,2021,410:126939.
[110]CARLOS C P A,LEITH S,ROSAZ G,et al. Planar deposition of Nb thin films by HiPIMS for superconducting radio frequency applications[J]. Vacuum,2024, 227:113354.
[111]ZINAI N,BOUZIDI A,SAOULA N,et al. Tailoring the structural and optical properties of HiPIMS TiO2 thin films for photovoltaic applications[J]. Optical Materials, 2022,131:112590.
[112] ABIDI M,ASSADI A A,BOUZAZA A,et al. Photocatalytic indoor/outdoor air treatment and bacterial inactivation on CuxO/TiO2 prepared by HiPIMS on polyester cloth under low intensity visible light[J]. Applied Catalysis B:Environmental,2019,259:118074.
[113] RATOVA M,WEST G T,KELLY P J. HiPIMS deposition of tungsten-doped titania coatings for photocatalytic applications[J]. Vacuum,2014,102:48−50.
[114] YANG C M,WEI C H,UGHI F,et al. High pH stability and detection of α-synuclein using an EGFET biosensor with an HfO2 gate deposited by high-power pulsed magnetron sputtering[J]. Sensors and Actuators B:Chemical,2024,416:136006.
[115] SHAH R,PAI N,KHANDEKAR R,et al. DLC coatings in biomedical applications-review on current advantages,existing challenges, and future directions[J]. Surface and Coatings Technology,2024,487:131006.
[116] GARG R,GONUGUNTLA S,SK S,et al. Sputtering thin films:Materials,applications,challenges and future directions[J]. Advances in Colloid and Interface Science,2024,330:103203.
无(wu)相关(guan)信息(xi)

kzjsbc.com
凯泽金属手机网