引言(yan)
物(wu)理气相沉(chen)积(ji)技(ji)术(PhysicalVaporDeposition,PVD),具(ju)有(you)相对较低的(de)工艺(yi)温(wen)度(du),沉(chen)积(ji)过程(cheng)便于控制,制(zhi)备(bei)出(chu)的涂层(ceng)性能优(you)异(yi)(均匀性高、残(can)余应力(li)小)和(he)易于工(gong)业化(hua)应用(yong)等优(you)点,在耐腐(fu)蚀(shi)涂层、超硬(ying)涂层、光学(xue)涂(tu)层(ceng)、耐摩擦涂层(ceng)以(yi)及(ji)复(fu)合(he)多(duo)层涂层的制备(bei)等领(ling)域(yu)都得(de)到(dao)广(guang)泛的(de)应用[1-6],因此(ci)越(yue)来越(yue)受(shou)到(dao)研(yan)究者(zhe)的(de)关(guan)注[7]。PVD技术(shu)主(zhu)要(yao)包(bao)括蒸镀技术(shu)、阴(yin)极电弧离子镀(du)技术和磁(ci)控(kong)溅射技术。其(qi)中(zhong)阴(yin)极(ji)电弧离子(zi)镀(du)技(ji)术具(ju)有沉(chen)积(ji)速(su)率高以及(ji)靶材粒(li)子离(li)化率(lv)高(gao)的(de)优势,但在(zai)加(jia)工过(guo)程(cheng)中(zhong)不(bu)可(ke)避(bi)免(mian)地会(hui)产(chan)生金属液滴,影(ying)响了(le)涂层的致密程(cheng)度[8]。蒸镀技(ji)术(shu)的优势(shi)在(zai)于加工成本低,制(zhi)备出(chu)的涂(tu)层(ceng)纯(chun)度(du)较高(gao),但(dan)其(qi)缺(que)点在(zai)于(yu)加工过程中(zhong)粒子能量较(jiao)低(di),制(zhi)备(bei)出(chu)的涂层与基体结合(he)较差(cha)。相(xiang)比(bi)于(yu)以(yi)上(shang)两种技(ji)术(shu),磁(ci)控(kong)溅射技术由于(yu)其(qi)加工过程中粒(li)子能(neng)量(liang)易于调控,制备(bei)出的(de)涂层(ceng)致(zhi)密、均(jun)匀(yun)性(xing)高(gao)在(zai)现(xian)代装(zhuang)备制造(zao)业(ye)中(zhong)获(huo)得了(le)广泛(fan)的(de)应用(yong)。
近(jin)些(xie)年(nian)来磁(ci)控(kong)溅(jian)射技术(shu)发展(zhan)迅猛(meng),产生(sheng)了(le)诸如直(zhi)流(liu)磁控(kong)溅射(DCMS)、高功率脉(mai)冲(chong)磁控溅射技术(shu)(HiPIMS)等(deng)新(xin)技(ji)术,但(dan)涂(tu)层沉积(ji)速率(lv)较低(di)[9-11]制(zhi)约了磁控(kong)溅(jian)射(she)规模(mo)化应(ying)用。例(li)如(ru),采用DCMS技(ji)术(shu)沉积(ji)金属(shu)涂层的(de)速(su)率(lv)约为10nm/s[12],对(dui)于(yu)复合(he)成(cheng)分涂层,尤(you)其是(shi)氧(yang)化(hua)物涂层(ceng),其沉(chen)积速(su)率(lv)甚至(zhi)更低[13-15]。由于(yu)磁(ci)控溅射过程中靶(ba)材表(biao)面的(de)溅(jian)射是(shi)产(chan)生涂(tu)层(ceng)粒子的主要(yao)机制(zhi),且溅射(she)强(qiang)度(du)与放电(dian)功率成正(zheng)比(bi),放(fang)电(dian)功率(lv)受(shou)到电(dian)源(yuan)、磁场强(qiang)度(du)和(he)冷(leng)却系统等(deng)设备(bei)本(ben)身(shen)的限制(zhi),仅(jin)依靠(kao)提(ti)高放电(dian)功(gong)率来提(ti)升(sheng)涂(tu)层(ceng)沉积(ji)速率(lv),其效(xiao)果(guo)非常(chang)有限。
最近的研究表(biao)明,当(dang)靶(ba)材表面[16–22]上(shang)发(fa)生(sheng)溅(jian)射作用(yong)时,还出(chu)现(xian)了(le)蒸(zheng)发或升华,涂层的(de)沉(chen)积(ji)速(su)率(lv)可(ke)能会显(xian)著(zhu)增(zeng)加(jia)1~2个数(shu)量级(ji)。与溅射(she)作用不同,只有在靶材表面(mian)温(wen)度(du)极高(gao)的情况下,才会(hui)出现靶材原子的(de)蒸发或(huo)升(sheng)华(hua)。靶材(cai)蒸发(fa)速率随(sui)着(zhe)温(wen)度的(de)升高而(er)几乎呈(cheng)指数(shu)增长,从这(zhe)个角度看,如(ru)果(guo)能(neng)够(gou)溅射(she)液态靶(ba)材(cai),磁(ci)控(kong)溅(jian)射的(de)涂(tu)层(ceng)沉积速(su)率将(jiang)获(huo)得极(ji)大提(ti)高。液(ye)态(tai)靶(ba)材磁控(kong)溅(jian)射技术由(you)Danilin等[23]最早提(ti)出(chu),该技术一(yi)经报(bao)道,就受(shou)到(dao)国(guo)内外学者(zhe)和工(gong)业界的广(guang)泛(fan)关(guan)注(zhu)。
由于先进装备(bei)制(zhi)造(zao)业、航(hang)空(kong)航天(tian)、半导(dao)体行业对(dui)高(gao)性能(neng)涂层(ceng)的(de)迫(po)切需(xu)求,液态(tai)靶(ba)材磁控溅射技术(shu)具(ju)有提高(gao)涂层沉积(ji)速(su)率(lv)以(yi)及提(ti)升能量利用(yong)效率(lv)的突(tu)出(chu)优势,使其(qi)有(you)望(wang)成(cheng)为(wei)涂层(ceng)制(zhi)备主流(liu)技术。国(guo)内(nei)外(wai)学(xue)者(zhe)对液(ye)态(tai)靶材(cai)磁(ci)控(kong)溅(jian)射(she)技(ji)术(shu)仍(reng)处(chu)于探(tan)索研究(jiu)阶(jie)段(duan),因此本文总(zong)结(jie)国(guo)内(nei)外近(jin)年(nian)来(lai)对(dui)该(gai)技(ji)术的研(yan)究成(cheng)果,并(bing)对(dui)该项技(ji)术未(wei)来(lai)的发展(zhan)趋势(shi)进(jin)行讨论(lun)与展(zhan)望(wang)。
1、液(ye)态(tai)靶材(cai)磁控(kong)溅射(she)技(ji)术特点及(ji)优势
1.1 液(ye)态靶(ba)材磁控(kong)溅射技(ji)术(shu)原理(li)
液(ye)态靶材磁控(kong)溅(jian)射放电(dian)装(zhuang)置主要由真(zhen)空系统、供气(qi)系统、磁(ci)控(kong)系(xi)统(tong)、冷却(que)系统、电(dian)源及(ji)其调制系(xi)统组成,与(yu)传统(tong)磁控(kong)溅(jian)射(she)放(fang)电装置相(xiang)类似(shi),如图1所示[24]。但在(zai)液态靶(ba)材磁控(kong)溅射系统(tong)中,靶材需要(yao)被(bei)放置(zhi)在坩埚(guo)中,同(tong)时调整(zheng)坩(gan)埚(guo)与冷却系(xi)统(tong)的(de)间距(ju),使靶(ba)材(cai)在涂层(ceng)制备(bei)过(guo)程中(zhong)始终(zhong)保(bao)持熔(rong)化状态(tai)。在(zai)放电开始(shi)时(shi),靶材(cai)一(yi)般是(shi)未(wei)熔化的,通(tong)过调(diao)整(zheng)放电功(gong)率,靶材在(zai)等离子体轰击作(zuo)用(yong)下逐渐被加热至(zhi)熔化(hua)状(zhuang)态。在(zai)靶(ba)材熔化(hua)后(hou),通过调整(zheng)放(fang)电(dian)参(can)数来进行所需涂层(ceng)的沉(chen)积。

1.2 液态靶(ba)材(cai)磁(ci)控溅射放电(dian)伏(fu)安特性(xing)
研(yan)究液态(tai)靶材(cai)放(fang)电(MLT)的(de)伏(fu)安特性(xing)曲(qu)线,对于(yu)深(shen)入理解(jie)放(fang)电(dian)机(ji)制(zhi)、进一(yi)步探索(suo)粒(li)子的传(chuan)输(shu)机(ji)制,对(dui)后(hou)期在(zai)涂层(ceng)制备过(guo)程中(zhong)具体工(gong)艺参数(shu)的选择具有重要(yao)的指导意(yi)义。关(guan)于(yu)液态靶材放(fang)电特性,目(mu)前(qian)学界(jie)普遍(bian)认为是由于(yu)高(gao)温(wen)下剧烈(lie)的热电子(zi)发(fa)射导致液态靶(ba)材(cai)的放电(dian)电(dian)流显著(zhu)增高(gao),放电(dian)电压(ya)相(xiang)比(bi)于固(gu)态(tai)靶(ba)材(cai)有(you)明(ming)显(xian)的(de)降低。
Shapovalov等(deng)[25]研(yan)究(jiu)了在(zai)纯氩(ya)气(qi)氛(fen)中(zhong)Ti靶(ba)在(zai)高(gao)温(wen)条件下直(zhi)流磁控(kong)溅射过程的(de)放(fang)电(dian)特(te)性(xing)变化趋势(shi),如(ru)图2(a)所示,随着放(fang)电电(dian)流(liu)升高(gao),放(fang)电电(dian)压呈现(xian)出先增(zeng)大(da)后(hou)减小(xiao)的(de)趋(qu)势(shi),并且(qie)在电流为(wei)3A时,放(fang)电(dian)电压出现最大(da)值(zhi)。呈现(xian)这种(zhong)变(bian)化趋(qu)势的(de)主要(yao)原因是在第一(yi)个阶段放电电(dian)流(liu)主要由(you)离子电流(I+)及(ji)二(er)次(ci)电子(zi)电流(γI+)组成(cheng),因(yin)此放电电(dian)压(ya)随(sui)放电(dian)电(dian)流增(zeng)高(gao)而增大。当(dang)电流(liu)增(zeng)大至3A后,由(you)于此(ci)前(qian)热量的(de)积累,靶材表(biao)面温(wen)度显(xian)著(zhu)升高(gao),因(yin)此热(re)电子发(fa)射(she)十(shi)分(fen)剧烈(lie)并(bing)主(zhu)导(dao)了(le)放电过程(cheng),热电子(zi)电流(ITe)不断增大(da),放(fang)电电(dian)压(ya)因(yin)此降(jiang)低。图2(b)给出(chu)了(le)放电总(zong)电(dian)流与离(li)子(zi)-二次(ci)电(dian)子(zi)电(dian)流之间(jian)的变化(hua)关系,其(qi)中(zhong)α如式(shi)(1)所示:

式(shi)中(zhong):α为放(fang)电(dian)总(zong)电(dian)流(liu)与(yu)离子(zi)-二次电子电(dian)流的比值。

可见(jian)当(dang)放电电流(liu)大(da)于3A后,靶(ba)表面温度(du)升高而(er)引(yin)发(fa)的(de)热(re)电(dian)子(zi)发(fa)射十(shi)分(fen)显著(zhu)。Shapovalov等(deng)[26]还(hai)研(yan)究了(le)热Ti靶与(yu)冷(leng)Ti靶(ba)在(zai)纯(chun)氩气(qi)氛中(zhong)放电(dian)伏安特性的(de)异同,如(ru)图3所(suo)示。在电(dian)流密(mi)度(du)j小(xiao)于75mA/cm2时(shi),二者(zhe)没有明显(xian)差异,但(dan)当(dang)电流密(mi)度大(da)于(yu)75mA/cm2时(shi),热Ti靶(ba)的放电(dian)电压显著降(jiang)低,但冷(leng)Ti靶的放(fang)电电(dian)压(ya)仍(reng)然(ran)随电流(liu)密度(du)的(de)升高(gao)而(er)增(zeng)大。这(zhe)说明在(zai)强(qiang)制(zhi)冷(leng)却条件下(xia)的Ti靶热电子(zi)电(dian)流发(fa)射效(xiao)应不(bu)明显(xian),只有靶表(biao)面处(chu)于(yu)高(gao)温状态下(xia)才(cai)会有剧(ju)烈的热电子发(fa)射。Zhukov等[27]对(dui)在(zai)纯氩(ya)气(qi)氛(fen)中Al靶从(cong)固态到液态的(de)直流(liu)磁(ci)控溅(jian)射(she)放电(dian)过(guo)程(cheng)进(jin)行(xing)了研究,检测了放电电(dian)流、电压(ya)及(ji)坩埚温度(du)随时(shi)间(jian)的(de)变(bian)化趋(qu)势,如图(tu)4所(suo)示(shi),放电过程中(zhong)直流电源(yuan)设(she)置(zhi)为(wei)恒(heng)功率模式(shi)运行。研(yan)究(jiu)结(jie)果(guo)表明(ming),随(sui)靶(ba)材(cai)温度上升,放电(dian)电流(liu)逐(zhu)渐(jian)增(zeng)大(da),放(fang)电(dian)电(dian)压先(xian)增(zeng)高(gao)后降低(di)并在(zai)靶(ba)材(cai)完全(quan)熔(rong)化后(hou)保(bao)持(chi)稳定。值(zhi)得注意的(de)是,在(zai)靶材(cai)完全(quan)熔化(hua)后(hou),放(fang)电电(dian)流相(xiang)比(bi)于(yu)固态(tai)时(shi)增大了一(yi)倍,这主要(yao)是液态靶(ba)材(cai)蒸(zheng)发出的金属(shu)原子进(jin)一步电(dian)离(li)以(yi)及热电(dian)子发(fa)射的(de)增(zeng)加(jia)所(suo)造(zao)成(cheng)的(de)。


1.3 液态(tai)靶材磁(ci)控(kong)溅(jian)射(she)放(fang)电(dian)等(deng)离(li)子(zi)体(ti)特(te)性(xing)
涂(tu)层(ceng)沉积(ji)速率(lv)主(zhu)要取决于(yu)放(fang)电等离(li)子(zi)体中(zhong)靶材粒子的(de)密(mi)度(du),因(yin)此研究(jiu)MLT放(fang)电过程中(zhong)的等(deng)离(li)子(zi)体(ti)特性(xing)可(ke)以(yi)为(wei)调(diao)控(kong)涂(tu)层(ceng)的(de)沉积(ji)速率及(ji)质量(liang)提(ti)供(gong)理(li)论(lun)指导,并有助(zhu)于(yu)深(shen)入理解液(ye)态(tai)靶(ba)材(cai)的放(fang)电机理(li)。Kolodko等(deng)[28]利用(yong)质(zhi)谱(pu)仪探究(jiu)了(le)液态(tai)Cu靶在直(zhi)流(liu)磁控溅(jian)射放(fang)电过(guo)程(cheng)中(zhong)衬(chen)底(di)附(fu)近的离子(zi)通(tong)量,检测结(jie)果(guo)如图(tu)5所(suo)示。结(jie)果表(biao)明(ming),液态(tai)Cu靶在放电(dian)过(guo)程(cheng)中,即使没有(you)工(gong)作(zuo)气(qi)体的参与,也(ye)能(neng)处(chu)于一种(zhong)独(du)特的“无气(qi)自(zi)溅(jian)射”状(zhuang)态,在等离子体质谱(pu)分析中(zhong),未(wei)检测(ce)到Ar粒子(zi)的(de)存在,而(er)固态Cu靶(ba)的(de)放(fang)电过程则(ze)必须(xu)依赖(lai)于(yu)工作气(qi)体(ti)粒子(Ar+和Ar2+)的参(can)与。另外,液(ye)态Cu靶在“无(wu)气自溅射(she)”放(fang)电模式中所展(zhan)现(xian)出的独(du)特性(xing)质,可能(neng)会显(xian)著提(ti)高(gao)所(suo)沉积Cu涂层(ceng)的(de)纯(chun)度。因为(wei)在(zai)传(chuan)统(tong)的(de)固(gu)态(tai)靶(ba)磁控溅(jian)射体系中气体离(li)子和原(yuan)子(zi)会(hui)从等(deng)离(li)子(zi)体中进入到(dao)正(zheng)在(zai)沉积的涂层(ceng)中(zhong),影(ying)响(xiang)沉积涂(tu)层的纯度(du)。Kaziev等[29]对(dui)放(fang)电等(deng)离(li)子体的发射(she)光谱(OES)研(yan)究结(jie)果(guo)同样证实(shi)了这点,如(ru)图6所示(shi),当液态Cu靶(ba)处(chu)于无气自溅(jian)射(she)放(fang)电状(zhuang)态(tai)时(shi),放(fang)电(dian)等离(li)子(zi)体中(zhong)主(zhu)要(yao)为(wei)Cu原子(zi)和Cu+离(li)子(zi),工(gong)作(zuo)气(qi)体(ti)含量(liang)较(jiao)少(shao)。


Tumarkin等(deng)[30]的(de)研究(jiu)证实(shi)了(le)在无工(gong)作气体(ti)的(de)情况(kuang)下(xia),液态(tai)Cu靶(ba)可(ke)以(yi)仅(jin)依靠(kao)电(dian)离自(zi)身蒸(zheng)发(fa)出(chu)的(de)原子维(wei)持(chi)等(deng)离子体(ti)放电。相比于(yu)存在工(gong)作(zuo)气体(ti)的(de)情(qing)况下(pAr=1.0Pa),在放(fang)电电(dian)流(liu)密(mi)度相同时,液态Cu靶(ba)无气(qi)自溅射模(mo)式(shi)(pAr=0Pa)的(de)放电电(dian)压(ya)降(jiang)低了(le)约10%,如图(tu)7(a)所(suo)示,这主要是(shi)由(you)于(yu)金属原子比(bi)气(qi)体原子的电离电位(wei)更低。Tumarkin等(deng)[30]还研(yan)究(jiu)了液(ye)态(tai)Cu靶在脉冲(chong)放电条件(jian)下(IMLT)等(deng)离子体密(mi)度(du)和(he)电(dian)离(li)度(du),如图7(b)所(suo)示(shi),等(deng)离(li)子体(ti)密(mi)度和(he)电(dian)离度(du)随(sui)放电(dian)功(gong)率(lv)密(mi)度增(zeng)大而逐(zhu)步增(zeng)加(jia),电(dian)离(li)度在(zai)距(ju)Cu靶(ba)表(biao)面(mian)5cm处(chu)约(yue)为(wei)60%,呈(cheng)现(xian)出HiPIMS的典(dian)型特(te)征。同时还发现,由(you)于液态Cu靶(ba)蒸发(fa)出的大量金(jin)属原(yuan)子,使(shi)得(de)等(deng)离子体(ti)强(qiang)电离区(qu)域(yu)膨胀,因(yin)此(ci)增加(jia)放(fang)电功(gong)率(lv)会(hui)使(shi)等离(li)子体(ti)密度随距(ju)离增(zeng)加(jia)而(er)变(bian)化(hua)的(de)梯度(du)减(jian)小(xiao),在P=2800W/cm2时,等离(li)子(zi)体(ti)密度(du)与靶表(biao)面(mian)间(jian)距(ju)呈(cheng)线性关系(xi)。

1.4 液(ye)态靶(ba)材(cai)磁(ci)控(kong)溅射优(you)势(shi)
近(jin)年(nian)来,对MLT技术(shu)的研(yan)究(jiu)表明(ming),其(qi)最大的(de)优势(shi)在于能量(liang)利用(yong)效(xiao)率高(gao)。在(zai)沉积纯(chun)金(jin)属(shu)涂层(ceng)时(shi),相(xiang)比(bi)于固(gu)态(tai)靶材(cai),由(you)于蒸发和溅射(she)的共(gong)同(tong)作(zuo)用,液态靶(ba)材的沉积(ji)速率可(ke)提高(gao)10~100倍。Bleykher等(deng)[31]研(yan)究了Pb靶(ba)的(de)放电功率(lv)密度与(yu)靶表面侵(qin)蚀速率(lv)的(de)变(bian)化(hua)趋势,如(ru)图8所(suo)示,当(dang)放(fang)电(dian)功率密度较低时,靶(ba)表面(mian)温度(du)较(jiao)低(di),溅射是影(ying)响靶(ba)表(biao)面侵(qin)蚀速率的主(zhu)要(yao)因素(su),当靶表面(mian)温度达到(dao)熔点的1.65倍(bei)后(hou),蒸(zheng)发(fa)导致靶(ba)表面(mian)侵蚀速(su)率(lv)呈指数增加(jia),取(qu)代溅射成(cheng)为(wei)影响靶表(biao)面(mian)侵(qin)蚀速(su)率的主要因素。在蒸发(fa)占主(zhu)导地位的(de)情(qing)况(kuang)下(xia),沉积(ji)过程粒(li)子流密(mi)度由1016atoms/(cm2·s)提升(sheng)至(zhi)1018atoms/(cm2·s),涂(tu)层沉积(ji)速(su)率(lv)显著提(ti)高(gao)到(dao)102~103nm/s,如(ru)图(tu)9所示。Bleykher等(deng)还(hai)计算(suan)了Cr靶和(he)Ti靶(ba)沉积速率随放电(dian)功率(lv)密度的(de)变(bian)化趋势,研究结(jie)果表明(ming),在较高的放电功(gong)率(lv)密(mi)度下(xia),热靶(ba)表面蒸发作用十分(fen)明(ming)显(xian),与(yu)完(wan)全冷(leng)却的(de)靶材相比(bi),放(fang)置(zhi)于(yu)隔(ge)热(re)钼(mu)坩埚(guo)中(zhong)的(de)Cr靶和Ti靶的(de)沉(chen)积(ji)速率(lv)分(fen)别(bie)能够(gou)提高20倍(bei)和5倍。

除(chu)了具有较高(gao)的沉积(ji)速率(lv)外(wai),液(ye)态靶(ba)材(cai)磁(ci)控(kong)溅射过程(cheng)中的(de)等(deng)离(li)子体密度与离化率也(ye)非常高(gao)。较(jiao)高(gao)的离(li)化率(lv)便(bian)于(yu)在(zai)溅(jian)射过(guo)程(cheng)中(zhong)调控(kong)涂(tu)层结(jie)构(gou),例(li)如(ru)通(tong)过(guo)向衬底(di)施加偏(pian)压(ya)来提(ti)高(gao)金属(shu)离子(zi)向(xiang)基底方(fang)向(xiang)运动的通量(liang)与能量,制(zhi)备出力学性能较(jiao)好的(de)涂(tu)层(ceng)。Tumarkin等(deng)[24]在使用(yong)液态Cu靶直流磁(ci)控溅(jian)射技术(shu)制(zhi)备纯(chun)Cu涂层时(shi),分别向(xiang)衬(chen)底(di)施加(jia)了−50V、−100V、−300V、−400V的偏(pian)压,沉积了具有(you)不同结合强度(du)的(de)涂层(ceng),沉(chen)积涂层(ceng)的(de)截(jie)面(mian)形貌(mao)如(ru)图10所(suo)示(shi)。研究发(fa)现,通过(guo)提高衬(chen)底负(fu)偏压(ya),可以(yi)将(jiang)涂(tu)层(ceng)与衬底(di)的结合(he)力(li)大(da)幅提高(gao)(衬(chen)底(di)偏压(ya)为−400V时,涂(tu)层(ceng)受力(li)达(da)25N时仍(reng)未观(guan)察到明显剥(bo)落(luo)痕迹(ji))。


2、液态(tai)靶(ba)材磁控溅射(she)技(ji)术在涂(tu)层制(zhi)备(bei)中的应(ying)用
在(zai)传统的(de)固(gu)态靶(ba)材磁控溅射(she)过(guo)程(cheng)中(zhong),大都(dou)需(xu)要向真(zhen)空(kong)室(shi)内(nei)通(tong)入工作气(qi)体,并电离(li)工作(zuo)气体中的原(yuan)子用(yong)以(yi)维(wei)持等离子体(ti)放电(dian)。真空(kong)室中工(gong)作(zuo)气体的压(ya)力(li)的范围一(yi)般为0.1~1Pa[32],溅(jian)射出的靶(ba)材原(yuan)子与真空室(shi)内的(de)工(gong)作(zuo)气体原子(zi)发(fa)生(sheng)碰(peng)撞(zhuang),降(jiang)低了(le)靶材(cai)原(yuan)子沉(chen)积到(dao)基底上的(de)能量(liang),并导致涂层沉积(ji)速(su)率(lv)的(de)降低。根据(ju)前(qian)文所(suo)述,液态(tai)靶(ba)材在溅(jian)射(she)过(guo)程中(zhong)伴随(sui)着靶材(cai)原子(zi)的(de)大量(liang)蒸发,可(ke)以实现无气(qi)自溅(jian)射模(mo)式。许(xu)多研究者(zhe)认为,这种模式将为(wei)金属(shu)涂层(ceng)的(de)制备带(dai)来许多(duo)优势(shi)[33-37]。目(mu)前利(li)用液态靶材无(wu)气自溅(jian)射(she)模(mo)式(shi)来(lai)沉(chen)积(ji)涂(tu)层的(de)研(yan)究主(zhu)要集(ji)中(zhong)在Cu、Cr等材(cai)料上(shang)。
2.1 Cu涂(tu)层(ceng)
Bleykher等(deng)[38]采(cai)用(yong)液态Cu靶磁(ci)控(kong)溅射制(zhi)备(bei)Cu涂层,制备出的Cu涂(tu)层相(xiang)比(bi)于(yu)溅(jian)射固态(tai)Cu靶(ba),结构没(mei)有(you)明显(xian)差异,但沉积(ji)速率高达(da)140nm/s(溅(jian)射固(gu)态(tai)Cu靶(ba)沉(chen)积(ji)速(su)率(lv)仅(jin)为(wei)4nm/s),且表(biao)面更光滑(hua),平(ping)均粗(cu)糙(cao)度(du)更(geng)低(di),AFM结果(guo)如(ru)图11所示,由于(yu)蒸(zheng)发(fa)而显(xian)著(zhu)增(zeng)加的(de)靶材(cai)粒(li)子密(mi)度(du)对(dui)涂层表(biao)面形(xing)态产(chan)生(sheng)了影响(xiang)。Bleykher等[39]还研(yan)究了不(bu)同坩埚材(cai)质(zhi)对Cu涂层沉积的影响,SEM下Cu涂层的形(xing)貌(mao)如图(tu)12所示。图(tu)12中,液态(tai)Cu靶置于石墨坩(gan)埚(guo)中沉积(ji)得(de)到(dao)的(de)涂层(a)表(biao)面(mian)形貌(mao)与(b)截面形(xing)貌;液态(tai)Cu靶置于钼(mu)坩(gan)埚中(zhong)沉(chen)积(ji)得(de)到的涂(tu)层(c)表(biao)面(mian)形貌与(d)截(jie)面形貌;相比于石(shi)墨坩埚,使(shi)用钼(mu)坩(gan)埚(guo)沉(chen)积(ji)得到的(de)Cu涂层表(biao)面(mian)颗(ke)粒更加(jia)细小均(jun)匀(yun),涂层也(ye)较(jiao)为致密(mi),而使用(yong)石墨坩(gan)埚(guo)沉(chen)积(ji)的Cu涂层表(biao)面颗粒(li)较为粗(cu)大,孔(kong)隙和(he)缺(que)陷(xian)较多(duo),具有(you)明(ming)显的(de)柱状(zhuang)结构。作者认为钼(mu)坩埚(guo)在(zai)溅(jian)射(she)过程中具(ju)有更(geng)高(gao)通(tong)量的(de)热(re)辐(fu)射(she),使得基(ji)体(ti)温度升(sheng)高(gao),表(biao)面原(yuan)子流动(dong)性增(zeng)强(qiang),形成(cheng)的涂(tu)层更(geng)为致密。

2.2 Cr涂层
Sidelev等(deng)[40]通过(guo)采用(yong)强制冷(leng)却(que)的(de)固态(tai)Cr靶和热(re)Cr靶的(de)磁控溅(jian)射(she)技术制(zhi)备(bei)了Cr涂层(ceng)。研究(jiu)结果(guo)表明(ming),在放(fang)电(dian)功(gong)率(lv)密度(du)相(xiang)同的(de)条件下,热靶的沉(chen)积速率(lv)比固态(tai)靶(ba)高出(chu)1.5~2倍,并(bing)且涂(tu)层(ceng)的(de)结(jie)合(he)力(li)明显(xian)优于(yu)固(gu)态(tai)靶(ba)沉(chen)积的(de)涂层,划痕实验(yan)结果如(ru)图13所示。

然(ran)而,热(re)靶沉(chen)积的涂(tu)层硬度(du)相对(dui)较(jiao)低(di),约比固态(tai)靶沉(chen)积的(de)涂层(ceng)低9%(固态(tai)靶12GPa降(jiang)低(di)为(wei)热靶(ba)的11GPa)。作者认为主(zhu)要(yao)是(shi)由(you)于热(re)靶(ba)在(zai)沉(chen)积过程中(zhong)蒸发(fa)的(de)大(da)量(liang)Cr原子(zi)在基(ji)体(ti)上(shang)产生(sheng)了热流,导致(zhi)了(le)硬(ying)度的(de)降低并改善了(le)结合力(li)。
3、结语与展(zhan)望
本文(wen)综(zong)述了近(jin)年来液(ye)态(tai)靶材(cai)磁控溅射(she)技术(shu)(MLT)的研究(jiu)进(jin)展,重(zhong)点探(tan)讨了(le)MLT放(fang)电过(guo)程中(zhong)的放电特(te)性(xing)及(ji)等离子(zi)体特性,通(tong)过(guo)对比(bi)MLT与传(chuan)统固态靶(ba)材(cai)磁(ci)控溅(jian)射(she)过(guo)程(cheng)的技术(shu)特(te)点(dian),认为(wei)MLT技(ji)术将磁控(kong)溅射和(he)蒸(zheng)镀两(liang)种(zhong)技术的(de)优(you)点进(jin)行(xing)了融合(he),从而实现了(le)极高(gao)的(de)能(neng)量利用效率(lv),并大(da)幅(fu)提(ti)高(gao)了(le)磁(ci)控溅射(she)涂层(ceng)制(zhi)备过程(cheng)中的(de)沉(chen)积速(su)率,以极高的(de)速率沉积(ji)了(le)如Cu、Cr等(deng)材(cai)质(zhi)的(de)纯(chun)金属(shu)涂(tu)层(ceng)。
但与(yu)传统(tong)固态(tai)靶(ba)磁控溅(jian)射相(xiang)比(bi),液态(tai)靶材放(fang)电(dian)等(deng)离子(zi)体中由(you)蒸发(fa)而(er)产(chan)生(sheng)的(de)原子(zi)数(shu)量(liang)较多,其(qi)动(dong)能(neng)相(xiang)对(dui)较低,因此存在着(zhe)离(li)化(hua)率(lv)损(sun)失与涂(tu)层(ceng)力(li)学(xue)性(xing)能(neng)下降的(de)问题(ti),这(zhe)也是(shi)制约MLT技(ji)术发(fa)展的(de)重要(yao)因(yin)素(su)。另(ling)外,在(zai)溅射过程(cheng)中(zhong)液(ye)态(tai)靶(ba)材表(biao)面(mian)温度较高,也(ye)会(hui)向(xiang)衬(chen)底辐射大量(liang)热量导致衬(chen)底升温,因(yin)此无法使(shi)用(yong)MLT技(ji)术在(zai)对温(wen)度敏感(gan)的(de)不耐温衬底(di)上(shang)沉积涂(tu)层(ceng)。由(you)于MLT技术的(de)发(fa)展(zhan)才刚(gang)刚(gang)起(qi)步,现(xian)有(you)研究的(de)主(zhu)要(yao)侧(ce)重点在(zai)于(yu)研究液态(tai)靶材(cai)放电特(te)性(xing)与提高涂层(ceng)沉积(ji)速率,对上述两(liang)个(ge)问(wen)题(ti)研(yan)究(jiu)较少(shao)。因(yin)此(ci)如(ru)何(he)在(zai)保(bao)证(zheng)高(gao)沉(chen)积速率的同时进(jin)一(yi)步提高(gao)放电等(deng)离(li)子体中粒子(zi)离化率,如(ru)何有(you)效利用高(gao)温(wen)下(xia)靶(ba)材(cai)表(biao)面(mian)发射的(de)热(re)电子,以及如何进一步(bu)提高(gao)涂(tu)层的力(li)学性(xing)能(neng),具有重大(da)的研究(jiu)价(jia)值和(he)深(shen)远的(de)研(yan)究前景。
参考文(wen)献:
[1] LI C L,WANG L G,SHANG L L,et al. Mechanical and high-temperature tribological properties of CrAlN/TiSiN multilayer coating deposited by PVD[J]. Ceramics Interna-tional,2021,47(20):29285−29294.
[2] PARK G D,YANG J H,LEE K H,et al. Ultra-high corro-sion resistance of Al-Mg-Si film on steel sheet formed by PVD Mg coating and heat treatment[J]. Corrosion Science,2021,192:109829.
[3] KONG D J,FU Y Z,WU Y Z,et al. Interfacial characteris-tics and tribological properties of TiN coatings prepared by PVD method[J]. Journal of Vacuum Science and technology,2012,32:1078−1083.
[4] ENGELHART W,DREHER W,EIBL O,et al. Deposition of [4]alumina thin film by dual magnetron sputtering:Is it γ-Al 2 O 3 ?[J]. Acta Materialia,2011,59(20):7757−7767.
[5]REDDY I N,REDDY V R,SRIDHARA N,et al. Optical and microstructural characterisations of pulsed rf magnetron sput-tered alumina thin film[J]. Journal of Materials Science & Technology,2013,29(10):929−936.
[6] REDDY I N,REDDY V R,SRIDHARA N,et al. Pulsed rf magnetron sputtered alumina thin films[J]. Ceramics Interna-tional,2014,40(7):9571−9582.
[7] OLSSON M K,MACAK K,GRAF W. Reactive d.c. magne-tron sputter deposited Al 2 O 3 films:large-area coatings for in-dustrial applications[J]. Surface and Coatings Technology,1999,122(2/3):202−207.
[8] LING G W,SHEN H Y,ZHOU F T. Cathode arc deposition technology and its development[J]. Vacuum,1996,1:1−12.
[9] MUSIL J. Recent advances in magnetron sputtering technology [J]. Surface and Coatings Technology,1998,100/101:280−286.
[10] BRAUER G,SZYSZKA B,VERGOHL M,et al. Magne-tron sputtering-milestones of 30 years[J]. Vacuum, 2010,84(12):1354−1359.
[11] ANDERS A. Deposition rates of high power impulse mag-netron sputtering: Physics and economics[J]. Journal of Vacuum Science & Technology A,2010,28(4):783-790.
[12] JIN Y Z,WU W,LI L. Effect of sputtering power on sur-face topography of dc magnetron sputtered Ti thin films ob-served by AFM[J]. Applied Surface Science,2009,255(8):4673−4679.
[13] EDLOU S M,SMAJKIEWICZ A,AL-JUMAILY G A. Op-tical properties and environmental stability of oxide coatings deposited by reactive sputtering[J]. Applied Optics,1993,32(28):5601−5605.
[14] ZHUKOV V V,KRIVOBOKOV V P,YANIN S N. Sput-tering of the magnetron diode target in the presence of an external ion beam[J]. Technical Physics,2006,51:453−458.
[15] PICHUGIN V F,SURMENEV R A,SHESTERIKOV E V,et al. The preparation of calcium phosphate coatings on tita-nium and nickel–titanium by rf-magnetron-sputtered depo-sition:composition,structure and micromechanical proper-ties[J]. Surface and Coatings Technology,2008,202(16):3913−3920.
[16] MUSIL J,RAJSKY A,BELL A J,et al. High-rate mag-netron sputtering[J]. Journal of Vacuum Science and Techno-logy A,1996,14:2187–2191.
[17] MERCS D,FERRY F,BILLARD A. Hot target sputtering: a new way for high-rate deposition of stoichiometric cera-mic films[J]. Surface and Coatings Technology, 2006,201(6):2276−2281.
[18]VLCEK J,ZUSTIN B,REZEK J,et al. Pulsed magnetron sputtering of metallic films using a hot target[C]//52nd An-nual Technical Conference Proceedings,Santa Clara,CA:Society of Vacuum Coaters,2009:219-223.
[19] MUSIL J,SATAVA V,BAROCH P. High-rate reactive de-position of transparent SiO 2 films containing low amount of Zr from molten magnetron target[J]. Thin Solid Films,2010,519(2):775−777.
[20] TESAR J,MARTAN J,REZEK J. On surface temperatures during high power pulsed magnetron sputtering using a hot target[J]. Surface and Coatings Technology,2011,206(6):1155−1159.
[21] TUMARKIN A V,ZIBROV M,KHODACHENKO G V,et al.High-rate deposition of silicon films in a magnetron dis-charge with liquid target[J]. Journal of Physics Conference Series,2016,768(1):012015.
[22] TUMARKIN A V,ZIBROV M,KHODACHENKO G V ,et al. Technological features of the thick tin film deposition by with magnetron sputtering form liquid-phase target[J]. Key Engineering Materials,2018,781:8-13.
[23] DANILIN B S,KAKURIN M V,MINAYCHEV V E,et al.Deposition of metal coatings by magnetron sputtering from liquid target[J]. Elektron Tekhnol,1978,2(72):84−87.
[24] TUMARKIN A V,KAZIEV A V,KOLODKO D V,et al. De-position of copper coatings in a magnetron with liquid target [J]. Physics of Atomic Nuclei,2015,78(14):1674−1676.
[25] SHAPOVALOV V I,AHMEDOV H,KOZIN A A,et al.Simulation of the effect of argon pressure on thermal pro-cesses in the sputtering unit of a magnetron with a hot tar-get[J]. Vacuum,2021,192:110421.
[26] SHAPOVALOV V I,ZAVYALOV A V,MELESHKO A A.Current-voltage characteristics of a magnetron with a hot ti-tanium target in chemically active environments[J]. Surface and Coatings Technology,2021,417:127189.
[27] ZHUKOV V V,KOSMIN D M,KRIVOBOKOV V P,et al.Magnetron discharge in the diode with a liquid-metal target [R]. Tomsk, Russia: Nuclear Physics Institute at Tomsk Polytechnic University,2004.
[28] KOLODKO D V,LISENKOV V Y,et al. Cu metallization of Al 2 O 3 ceramic by coating deposition from cooled- and hot-target magnetrons[J]. Coatings,2023,13(2):238.
[29]KAZIEV A V,TUMARKINA A V,LEONOVA K A,et al.Discharge parameters and plasma characterization in a dc magnetron with liquid Cu target[J]. Vacuum, 2018, 156:48−54.
[30] TUMARKIN A V,KAZIEV A V,KHARKOV M M,et al.High-current impulse magnetron discharge with liquid tar-get[J]. Surface and Coatings Technology,2016,293:42−47.
[31] BLEYKHER G A,KRIVOBOKOV V P,YURJEVA A V,et al. Energy and substance transfer in magnetron sputtering systems with liquid-phase target[J]. Vacuum, 2016, 124:11−17.
[32] MUSSCHOOT J,HAEMERS J. Qualitative model of the magnetron discharge[J]. Vacuum,2009,84(4):488−493.
[33] MUSIL J. Low-pressure magnetron sputtering[J]. Vacuum,1998,50(3/4):363−372.
[34] POSADOWSKI W M. Self-sustained magnetron co-sputter-ing of Cu and Ni[J]. Thin Solid Films,2004,459(1/2):258−261.
[35] ANDERSSON J,ANDERS A. Gasless sputtering:opportu-nities for ultraclean metallization, coatings in space, and propulsion[J]. Applied Physics Letters,2008,92:221503.
[36] WIATROWSKI A,POSADOWSKI W M,JOZWIAK G,et al.Standard and self-sustained magnetron sputtering deposited Cu films investigated by means of AFM and XRD[J]. Mi-croelectronics Reliability,2011,51(7):1203−1206.
[37] WIATROWSKI A,POSADOWSKI W M,RADZIMSKI Z J.Pulsed dc self-sustained magnetron sputtering[J]. Journal of Vacuum Science & Technology A,2008,26:1277-1281.
[38] BLEYKHER G A,YURYEVA A V,SHABUNIN A S,et al.The properties of Cu films deposited by high rate magnetron sputtering from a liquid target[J]. Vacuum,2019,169:108914.
[39] BLEYKHER G A,BORDULEV A O,YURYEVA A V,et al.Features of copper coatings growth at high-rate deposition using magnetron sputtering systems with a liquid metal target[J]. Surface and Coatings Technology,2017,324:111−120.
[40] SIDELEV D V,BLEYKHER G A,KRIVOBOKOV V P,et al.High-rate magnetron sputtering with hot target[J]. Surface and Coatings Technology,2016,308:168−173.
相关(guan)链(lian)接(jie)