- 2023-10-05 16:49:34 镍基高温合(he)金的(de)熔(rong)炼(lian)工艺研究进展
- 2022-12-21 18:13:14 镍(nie)靶材(cai)厂家(jia)谈增材(cai)制造镍(nie)基(ji)高(gao)温合(he)金研(yan)究进(jin)展
热门(men)搜索(suo)词: 钛靶 铬靶(ba) 锆靶 镍靶 钛(tai)丝 钛锻(duan)件(jian) 钛(tai)法(fa)兰(lan) 钛(tai)块 钛加(jia)工件
镍基高温(wen)合(he)金(jin)在 600 ℃ 以(yi)上具有(you)出(chu)色的(de)组(zu)织稳(wen)定(ding)性(xing)、抗(kang)氧(yang)化(hua)性(xing)能(neng)、抗(kang)热腐(fu)蚀性能(neng)及(ji)力(li)学(xue)性(xing)能,是(shi)热(re)端(duan)部(bu)件(jian)制(zhi)造(zao)的重(zhong)要材料,在(zai)航(hang)空(kong)发(fa)动机(ji)与(yu)燃气(qi)轮机中具(ju)有(you)广泛应(ying)用(yong),传统(tong)制(zhi)备工艺主要为铸造、锻(duan)造及粉末冶(ye)金[1-2]。随(sui)着航空(kong)发(fa)动机与(yu)燃(ran)气轮(lun)机的(de)快(kuai)速(su)发(fa)展(zhan),镍(nie)基(ji)高(gao)温合(he)金(jin)零件表(biao)现(xian)出复(fu)杂(za)化、轻量化(hua)、一体(ti)化(hua)的(de)发(fa)展趋(qu)势(shi),对镍(nie)基(ji)高温(wen)合(he)金制(zhi)备工(gong)艺(yi)提(ti)出了(le)新的(de)需(xu)求(qiu)。
增材制(zhi)造(zao)技术(shu)是(shi)一种(zhong)近(jin)净(jing)成(cheng)形(xing)工(gong)艺(yi),通(tong)过(guo)激(ji)光(guang)、电子(zi)束、电弧等(deng)高能束(shu)热源(yuan)逐层熔化(hua)粉(fen)末(mo)或丝材,以(yi)逐层堆叠(die)的(de)方式(shi)实现(xian)零件制备。常用(yong)的(de)镍(nie)基高(gao)温(wen)合(he)金(jin)增材制造工艺(yi)主(zhu)要有(you)激光(guang)粉末(mo)床(chuang)熔融(rong)(laser powder bed fusion, LPBF) 、 电 子 束(shu) 熔 融(electron beam melting, EBM)、激(ji)光直接熔(rong)化沉积(laser direct energy deposition, LDED)和电(dian)弧(hu)增材制造(wire arc additive manufacturing, WAAM)[3-4]。
相较于传(chuan)统(tong)工艺,增(zeng)材制(zhi)造(zao)技(ji)术(shu)更(geng)适(shi)合(he)进行(xing)复杂结构(gou)零件(jian)制造。增(zeng)材制造(zao)技术与(yu)拓扑(pu)优(you)化、集(ji)成化(hua)设(she)计等设(she)计(ji)方法(fa)相(xiang)结合可提(ti)高设(she)计(ji)自(zi)由(you)度,在促进(jin)装(zhuang)备(bei)轻(qing)量(liang)化(hua)的(de)同(tong)时,还(hai)能(neng)缩短(duan)加(jia)工(gong)周期。罗罗(luo)公司(si)使用增(zeng)材制(zhi)造技术,使(shi)零(ling)件(jian)制(zhi)造周(zhou)期缩(suo)短了(le) 30%[5]。
其(qi)为(wei) Trent XWB-84 发(fa)动(dong)机(ji)生产的低(di)压(ya)涡(wo)轮,质(zhi)量(liang)减(jian)轻约 40%[6]。利勃(bo)海尔(er)公司采(cai)用增材(cai)制(zhi)造(zao)替代(dai)传统制造(zao)技术,使零件(jian)质量(liang)减(jian)少(shao) 35%,零(ling)件(jian)数量减少 10 个(ge),生(sheng)产(chan)时间(jian)缩短 75%[5]。GE 公司的(de)增材制(zhi)造(zao) T25 传感器外(wai)壳(ke)将(jiang) 10 个(ge)零件(jian)合(he)并为(wei) 1 个(ge)零(ling)件(jian),使传(chuan)感(gan)器(qi)精度提高了(le) 30%。2015 年(nian),该(gai)零件(jian)成(cheng)为(wei)首个通(tong)过美国(guo)联邦(bang)航空局适(shi)航认(ren)证的(de)增材(cai)制(zhi)造航(hang)空发(fa)动机零件(jian)[7-8]。此外(wai),增(zeng)材制(zhi)造过(guo)程(cheng)冷却(que)速度(du)快、熔池固液(ye)界(jie)面温(wen)度梯(ti)度(du)大,不(bu)仅易形(xing)成沿沉积(ji)方(fang)向(xiang)连(lian)续(xu)外(wai)延(yan)生长(zhang)的(de)柱(zhu)状(zhuang)晶,还(hai)可(ke)减(jian)少凝固(gu)过程(cheng)中(zhong)的成(cheng)分偏(pian)析及组(zu)织(zhi)粗大(da)问(wen)题(ti),适用(yong)于涡(wo)轮(lun)叶(ye)片修(xiu)复(fu)。2001 年(nian),瑞(rui)士(shi)洛(luo)桑(sang)联(lian)邦(bang)理工(gong)学院(yuan)率先使(shi)用激(ji)光(guang)直接(jie)熔化(hua)沉积技术对(dui) CMSX-4 合(he)金叶(ye)片进(jin)行(xing)了(le)修复[9-11]。美国普(pu)渡(du)大学的(de)一项研(yan)究指(zhi)出,相(xiang)较于(yu)更(geng)换新(xin)叶(ye)片(pian),采用(yong)增(zeng)材制(zhi)造技(ji)术(shu)修复(fu)旧(jiu)叶片(pian),可(ke)减少36% 的能(neng)源消(xiao)耗(hao)[12]。因此(ci),增材制(zhi)造(zao)技术已逐(zhu)渐成(cheng)为具(ju)有良(liang)好(hao)可(ke)焊性镍(nie)基(ji)高温(wen)合(he)金零(ling)件快(kuai)速制造及(ji)修复的重(zhong)要技术(shu)途径。
本(ben)文(wen)对增(zeng)材(cai)制(zhi)造镍基(ji)高温(wen)合金(jin)在航空发(fa)动(dong)机(ji)与燃气(qi)轮(lun)机(ji)中(zhong)的(de)研(yan)究应(ying)用(yong)现状(zhuang)进行(xing)综(zong)述(shu),阐述(shu)增(zeng)材制(zhi)造(zao)镍基高(gao)温合(he)金(jin)的显(xian)微(wei)组织(zhi)特征(zheng)及常(chang)见(jian)冶金(jin)缺陷(xian)的形成原(yuan)因(yin)与(yu)控(kong)制方(fang)法,总(zong)结增(zeng)材制造 GH3536、GH3625 和 GH4169 的室温/高(gao)温拉伸(shen)性(xing)能,介(jie)绍航空(kong)发(fa)动(dong)机(ji)及燃气轮机中(zhong)增材(cai)制(zhi)造(zao)镍基(ji)高温合金(jin)零件的(de)应用情(qing)况。基于(yu)国(guo)内外研(yan)究现状,对(dui)今(jin)后(hou)的重(zhong)要(yao)发展(zhan)方(fang)向进(jin)行(xing)展望(wang)。
1 、增(zeng)材(cai)制(zhi)造镍基高温合(he)金(jin)显(xian)微(wei)组(zu)织(zhi)
增材制造(zao)过程(cheng)温度(du)梯度(du)大(da)、冷(leng)却(que)速(su)度快(kuai),与(yu)传统(tong)工艺制备(bei)镍(nie)基(ji)高温(wen)合金的显(xian)微组织(zhi)存在(zai)差(cha)异。采用(yong)不同增(zeng)材(cai)制造(zao)方法(fa)成(cheng)形的(de)镍基高(gao)温合金的(de)晶(jing)粒(li)形(xing)貌(mao)均主要由沿(yan)沉积方(fang)向(xiang)外延生长的(de)柱状晶与(yu)少(shao)量(liang)等(deng)轴晶构(gou)成(cheng),具(ju)有(you)明显(xian)的(de)各(ge)向(xiang)异(yi)性(xing)。直(zhi)接(jie)能(neng)量(liang)沉积过(guo)程热(re)量(liang)通(tong)过基板(ban)或(huo)已(yi)沉积部(bu)分(fen)散失(shi),故柱状晶(jing)通(tong)常(chang)垂直于基板并(bing)稍(shao)向(xiang)激光扫描(miao)方(fang)向(xiang)倾(qing)斜。粉(fen)末(mo)床熔(rong)融(rong)成(cheng)形(xing)过(guo)程熔池尺寸较小(xiao)、对流更为剧烈(lie),故(gu)柱状(zhuang)晶生长方向与直(zhi)接(jie)能(neng)量沉(chen)积相(xiang)比(bi)更为(wei)复(fu)杂(za)[5]。
增材制造(zao)镍(nie)基高(gao)温(wen)合(he)金的沉积态组织通(tong)常由 γ 相(xiang)、γ'相(xiang)、共晶组(zu)织(zhi)、Laves 相(xiang)、金属间化(hua)合(he)物(wu)和(he)碳(tan)化物(wu)等组成(图 1(a)~(c))[13]。Xu 等[14] 采用电弧(hu)增(zeng)材制造(zao)技(ji)术(shu)制备的(de) GH4169 合(he)金(jin)由(you)沿沉积方向生长的粗大的(de)柱(zhu)状晶(jing)组(zu)成,柱(zhu)状晶的(de)长度(du)和(he)宽度分别(bie)约(yue)为(wei) 11 mm 与 0.8 mm。Tayon 等[15] 对电子(zi)束熔(rong)融 GH4169 合(he)金的(de)研(yan)究结果表(biao)明,沉(chen)积(ji)态组织(zhi)具(ju)有(you)较(jiao)强的织构(gou),在(zai) 1190 ℃ 下(xia)进行(xing)热(re)处理(li)后柱状晶(jing)转变(bian)为(wei)等轴晶(jing),织(zhi)构(gou)显(xian)著(zhu)减弱。有(you)研(yan)究(jiu)在激光粉(fen)末床熔融成(cheng)形 GH4169 合(he)金(jin)的沉积态组织中发(fa)现(xian)了(le)脆性(xing)金(jin)属(shu)间(jian)化合物 δ 相(xiang)和 Laves 相(xiang)[16-17],还(hai)有(you)报道(dao)指出激光直(zhi)接(jie)熔(rong)化沉积 GH4169 合金中(zhong)存(cun)在碳(tan)化(hua)物和 Laves 相(xiang)[18]。激(ji)光(guang)粉(fen)末床(chuang)熔(rong)融(rong)成(cheng)形(xing) GH3536 合金(jin)的(de)沉(chen)积(ji)态组织主(zhu)要由单(dan)相奥氏体构(gou)成(cheng),晶界(jie)基(ji)本(ben)无(wu)析(xi)出(chu)物(wu)[19-20]。激(ji)光(guang)粉末(mo)床熔(rong)融(rong)成形(xing) GH3625 合金(jin)沉积(ji)态组(zu)织主(zhu)要由(you) γ 相基(ji)体(ti)、金(jin)属间化合(he)物和(he) Laves相(xiang)构(gou)成(cheng)[21-23]。Wang 等[24] 对(dui)激光(guang)直接(jie)熔(rong)化沉积(ji)IC10 合(he)金的研究表明(ming),凝固(gu)过(guo)程(cheng)中的成(cheng)分(fen)偏(pian)析会(hui)导致(zhi)晶(jing)界(jie)形成(cheng)共(gong)晶(jing)组织(zhi)。

非(fei)平衡相及 Laves 相的(de)存(cun)在会对材(cai)料(liao)性(xing)能造成不(bu)良影响(xiang),因此要对成形(xing)合金进行热(re)处(chu)理/热(re)等静(jing)压处(chu)理,以改(gai)善其(qi)内部(bu)质(zhi)量与(yu)显(xian)微(wei)组织。增(zeng)材制(zhi)造(zao) GH4169 合金通(tong)常(chang)要进(jin)行固溶(rong)处理,使(shi) δ 相(xiang)和(he) Laves相(xiang)充分(fen)溶(rong)解(jie),促进后续(xu)时(shi)效(xiao)处理(li)中(zhong) γ' 相的(de)析出(chu)。由(you)于 Nb 原(yuan)子(zi)扩散(san)能力(li)较(jiao)差(cha),为了使 δ 相充(chong)分(fen)溶解(jie),增(zeng)材(cai)制造(zao) GH4169 合金(jin)的固(gu)溶温度(du)一般要高于锻件的(de)固溶处(chu)理(li)温度[25]。Ni 等[26] 研究(jiu)了(le)固(gu)溶温度(du)对激(ji)光(guang)粉(fen)末床熔融(rong)成(cheng)形 GH4169 合金(jin)晶(jing)粒形貌(mao)的(de)影(ying)响(xiang)后指出(chu),经 980 ℃ 固溶处(chu)理后,柱(zhu)状晶(jing)部(bu)分转(zhuan)化为等轴(zhou)晶,导致了(le)晶(jing)粒(li)尺(chi)寸(cun)的(de)减(jian)小;经 1040 ℃ 和(he)1100 ℃ 固(gu)溶处理后(hou),柱状(zhuang)晶完(wan)全转(zhuan)化(hua)为(wei)等(deng)轴(zhou)晶,不同(tong)热(re)处(chu)理状态(tai)下 GH4169 合金的(de)晶粒(li)形(xing)貌如(ru)图(tu) 1(d)~(g)所示(shi)。激(ji)光粉末(mo)床熔(rong)融(rong)成形 GH3536 合(he)金在经过热(re)处(chu)理(li)后,熔(rong)池(chi)边界(jie)消失(shi),并(bing)伴(ban)随(sui)有(you)等轴(zhou)晶形成(cheng)[27],其在经(jing)过热(re)等静(jing)压(ya)处(chu)理后,晶(jing)粒(li)长大(da)并(bing)转(zhuan)变为等(deng)轴晶(jing),且晶界与晶(jing)粒(li)内(nei)部的溶质(zhi)元(yuan)素(su)扩散(san)会导(dao)致(zhi)碳化物形成
[19-20,28]。有研(yan)究(jiu)指(zhi)出,激(ji)光粉(fen)末床熔融 GH3625 合金(jin)在 700 ℃ 固溶处理条件(jian)下,显微 组(zu) 织 基 本 不 发 生 变(bian) 化 。 当 固(gu) 溶(rong) 温(wen) 度(du) 升(sheng) 高(gao) 至(zhi)1000 ℃ 时,熔池边(bian)界消失(shi),有(you)碳化物(wu)在(zai)晶(jing)界(jie)析出。经(jing)过 1150 ℃ 热(re)处理(li)后,晶粒(li)进一步长(zhang)大(da),且(qie)晶界处的碳化(hua)物(wu)也(ye)会(hui)明显(xian)发(fa)生(sheng)粗化(hua)[29]。Wang 等[30] 对激(ji)光直接(jie)熔化(hua)沉(chen)积(ji) GH3230 合(he)金的研究表(biao)明(ming),合金(jin)沉积态(tai)组(zu)织(zhi)中(zhong)存(cun)在 M23C6 与 M6C 两(liang)种(zhong)碳(tan)化物(wu)。经固(gu)溶处理后(hou),碳化物(wu)含量与(yu)尺寸(cun)均明(ming)显(xian)减(jian)少(shao),且M23C6 碳化(hua)物完(wan)全消失。黄(huang)文普(pu)等(deng)[31] 发现(xian)激(ji)光(guang)粉(fen)末(mo)床(chuang)熔(rong)融(rong)成(cheng)形(xing) K4202 合(he)金(jin)经固(gu)溶+时效(xiao)处理后(hou)发生(sheng)再(zai)结晶(jing),且晶界(jie)和(he)晶(jing)内(nei)均有(you)碳化物析出。
增材(cai)制(zhi)造(zao)镍基高(gao)温合(he)金(jin)的定(ding)向生长(zhang)特性(xing),使其(qi)成为单晶(jing)高温(wen)合金(jin)制(zhi)备(bei)与修复的重要(yao)手(shou)段(duan)。在(zai)单晶高温(wen)合金制(zhi)备(bei)方(fang)面(mian),Jodi 等(deng)[32] 使(shi)用激光(guang)粉末床(chuang)熔融(rong)技术,通(tong)过(guo)平(ping)顶(ding)光(guang)在多晶(jing)合(he)金(jin)基(ji)体(ti)上(shang)实现(xian)了(le)单晶合金的(de)制(zhi)备(bei)。近年来(lai),随着(zhe)电子束熔融技(ji)术(shu)的(de)发(fa)展(zhan),采用(yong)该(gai)方(fang)法进(jin)行单晶高温(wen)合金制(zhi)备成为(wei)研究(jiu)重(zhong)点(dian)之(zhi)一(yi)。Ramsperger 等[33] 首次使用电(dian)子(zi)束(shu)粉(fen)末床熔 融 技 术 制 备 了 单 晶(jing) 高(gao) 温 合(he) 金 。 Körner 等[34]制备的 CMSX-4 单晶(jing)高(gao)温合金(jin)在(zai)经过热(re)处(chu)理后可达到与(yu)铸(zhu)件(jian)相当(dang)的(de)力学(xue)性能(neng),某(mou)些性(xing)能甚至(zhi)优(you)于(yu)铸(zhu)件(图 1(h))。Fernandez-Zelaia 等(deng)[35] 研(yan)究了工(gong)艺参(can)数(shu)对高(gao)温(wen)合金(jin)显微组织(zhi)的(de)影响,发(fa)现较(jiao)高(gao)的能(neng)量(liang)输入(ru)可促(cu)进单晶的(de)形(xing)成(cheng)。Chauvet 等(deng)[36] 在预热(re)温(wen)度约(yue) 1020 ℃ 条件下(xia),在(zai)不锈钢(gang)基板上(shang)制(zhi)备(bei)了无(wu)裂(lie)纹的单(dan)晶高(gao)温合金。林(lin)峰教授课题组[37] 采用电(dian)子束粉末(mo)床(chuang)熔融技(ji)术在不锈(xiu)钢基板上(shang)制(zhi)备了 Inconel738 单晶高温(wen)合金,由(you)于单晶(jing)的形(xing)成(cheng)对(dui)凝(ning)固(gu)条(tiao)件(jian)具(ju)有很(hen)强的(de)依(yi)赖性,因(yin)此制备不同(tong)尺(chi)寸的单晶高温(wen)合(he)金需要(yao)使用(yong)不同(tong)的工(gong)艺(yi)参(can)数。在单(dan)晶高温合金(jin)修(xiu)复(fu)领(ling)域,洛桑联邦理(li)工学(xue)院研究(jiu)了(le)激(ji)光直接熔化(hua)沉(chen)积(ji)工(gong)艺(yi)参(can)数(shu)对(dui) CMSX-4 合(he)金(jin)组(zu)织(zhi)影响(xiang)规(gui)律,并对CMSX-4 合(he)金(jin)叶片进行(xing)了修复(fu)[8-10]。Liang 等[38-42]研究(jiu)了激光(guang)快(kuai)速(su)凝固过程中(zhong)单(dan)晶(jing)高(gao)温(wen)合(he)金的凝固路径,分析(xi)了工(gong)艺(yi)参数对单晶高温(wen)合(he)金显微组(zu)织(zhi)的影响规律,并(bing)根据工(gong)艺优(you)化(hua)结果在(zai)单晶基体(ti)上成功制备出(chu)具有(you)良(liang)好定向(xiang)性(xing)的(de)单晶高温(wen)合金。中国科学(xue)院(yuan)金(jin)属研究(jiu)所分析(xi)了(le)热处理(li)对增材(cai)制造单晶(jing)高(gao)温(wen)合金显微组(zu)织的影(ying)响(xiang),并(bing)通过(guo)调整(zheng)工艺参(can)数(shu)实(shi)现(xian)了(le)DD32 单(dan)晶(jing)涡(wo)轮叶片的修复[43-44]。Rottwinkel 等(deng)[45]通过在(zai) CMSX-4 单(dan)晶高(gao)温(wen)合(he)金修(xiu)复区(qu)周围施加预(yu)热及对底(di)部(bu)进行(xing)水冷(leng),实(shi)现(xian)了熔(rong)池热(re)流(liu)方(fang)向的控制,从(cong)而(er)保证了修(xiu)复区单(dan)晶(jing)组(zu)织(zhi)的完(wan)整(zheng)性。Wang等(deng)[46] 对(dui)比了(le)激光与等离子弧对 DD407 单(dan)晶(jing)高(gao)温合(he)金(jin)的(de)修(xiu)复(fu)效果(guo),发(fa)现两(liang)种工(gong)艺方(fang)法(fa)均(jun)可获(huo)得定(ding)向(xiang)生长的单晶组(zu)织,但等(deng)离(li)子弧(hu)修复(fu)后的热影响(xiang)区更大。Zhang 等(deng)[47] 利(li)用(yong)同(tong)步辐射技术(shu)发(fa)现了(le) DD5 单(dan)晶高(gao)温(wen)合(he)金在激光快速熔(rong)凝过(guo)程(cheng)中(zhong)的晶(jing)体转(zhuan)动(dong)现象,为单(dan)晶(jing)高(gao)温合(he)金(jin)增材制(zhi)造及修(xiu)复(fu)过(guo)程中(zhong)的(de)晶(jing)体(ti)取向(xiang)控(kong)制(zhi)提供了理论(lun)依(yi)据。
2、 增(zeng)材制造(zao)镍基(ji)高温合金(jin)冶(ye)金(jin)缺陷(xian)
孔(kong)隙(xi)和裂纹(wen)是(shi)增(zeng)材(cai)制造镍(nie)基高温合(he)金(jin)中较(jiao)为(wei)常(chang)见(jian)的(de)冶(ye)金(jin)缺(que)陷。孔隙的(de)形成原因(yin)主(zhu)要(yao)有(you)增材(cai)制(zhi)造(zao)过(guo)程(cheng)中(zhong)环境(jing)及原(yuan)材料(liao)粉(fen)末(mo)带(dai)来气(qi)体形(xing)成(cheng)的气孔,凝固过(guo)程中(zhong)液态(tai)金(jin)属(shu)收缩形(xing)成(cheng)的(de)孔(kong)洞及未(wei)完全熔化粉末(mo)颗粒之(zhi)间(jian)的孔(kong)隙。对(dui)于粉末床(chuang)熔融(rong)工(gong)艺,粉末(mo)颗(ke)粒(li)间的(de)孔(kong)隙也(ye)可(ke)能(neng)导致出现气(qi)孔(kong)[5,49]。增(zeng)材制(zhi)造镍基高温合(he)金(jin)中的气(qi)孔难以避免,但是可通过优(you)化增(zeng)材制造(zao)工艺(yi)参(can)数(shu)、控(kong)制(zhi)原材(cai)料(liao)粉末(mo)质(zhi)量、降(jiang)低成(cheng)形(xing)过(guo)程的氧含量及热(re)等静(jing)压等手段减小气(qi)孔率。对(dui)于(yu)未融化粉末导致的(de)孔隙(xi),可(ke)通(tong)过(guo)适当(dang)增(zeng)加输入(ru)能量(liang)避(bi)免[50]。Tomus 等(deng)[27] 采用(yong)热(re)等(deng)静压消除(chu)了(le)激光粉(fen)末(mo)床(chuang)熔融(rong) GH3536 合(he)金(jin)内部(bu)孔隙,提(ti)高(gao)了(le)材(cai)料的(de)室(shi)温伸长(zhang)率。Han 等[51] 对激(ji)光粉(fen)末(mo)床熔(rong)融GH3536 合金(jin)进(jin)行了热(re)等静(jing)压(ya)处理(li),消除了材料内部(bu)的(de)孔隙与(yu)微裂纹(wen),改(gai)善(shan)了(le)合(he)金(jin)的(de)疲(pi)劳(lao)性(xing)能(neng),但同时也导(dao)致了(le)抗(kang)拉强(qiang)度(du)与(yu)屈服(fu)强度(du)的下(xia)降(jiang)。
开(kai)裂(lie)是(shi)目前(qian)限制(zhi)增材(cai)制造(zao)技(ji)术(shu)在镍基高(gao)温(wen)合金(jin)制备(bei)中应(ying)用的主(zhu)要(yao)障(zhang)碍(ai),增材(cai)制造合(he)金(jin)裂(lie)纹(wen)形(xing)成(cheng)机制(zhi)主要(yao)有三种[52-53]:(1)凝固(gu)裂(lie)纹(wen):凝固裂纹形(xing)成(cheng)于熔池(chi)凝固的最(zui)后阶(jie)段(duan),在(zai)该(gai)阶段(duan)液(ye)相(xiang)充(chong)形(xing)困(kun)难(nan),凝固(gu)收缩(suo)引(yin)起的应力使(shi)枝晶间(jian)的(de)液(ye)膜(mo)被(bei)撕(si)裂(lie),导(dao)致(zhi)裂纹(wen)出(chu)现(图(tu) 2(a));(2)液(ye)化裂纹:液(ye)化(hua)裂纹形成(cheng)于(yu)后续(xu)沉(chen)积(ji)过(guo)程中(zhong),枝晶间的低(di)熔(rong)点析(xi)出(chu)物或(huo)共(gong)晶组织在(zai)后(hou)续(xu)沉积(ji)热循(xun)环(huan)中(zhong)熔(rong)化形(xing)成液(ye)膜,液膜在(zai)内应力作用下被(bei)撕裂形(xing)成(cheng)裂(lie)纹(wen)(图(tu) 2(b));(3)固(gu)态裂纹(wen):固态(tai)裂(lie)纹(wen)也(ye)是(shi)在(zai)后(hou)续沉积中形成的(de),但(dan)固(gu)态(tai)裂(lie)纹(wen)的形成(cheng)是由(you)于(yu)内(nei)应力超过(guo)了固(gu)体材(cai)料的(de)抗(kang)拉(la)强度(du)导致的(de),未(wei)出现(xian)局部(bu)熔(rong)化(图(tu) 2(c))。晶(jing)界(jie)结构、化(hua)学成分(fen)、成(cheng)分(fen)偏析、晶(jing)粒尺(chi)寸及(ji)内(nei)应(ying)力(li)等都会对增(zeng)材(cai)制造镍基高温合金(jin)裂纹(wen)的形成(cheng)造成(cheng)影响(xiang)。凝(ning)固(gu)过(guo)程(cheng)中(zhong)大(da)角度晶界(jie)处(chu)残(can)留(liu)的液膜较(jiao)多、界(jie)面能(neng)较高,易发生(sheng)开(kai)裂。与大角(jiao)度晶(jing)界相比(bi),小角(jiao)度(du)晶(jing)界具(ju)有(you)更(geng)好的(de)稳(wen)定(ding)性(xing),开裂倾向(xiang)较(jiao)低[54-55]。Chauvet 等(deng)[56]的研(yan)究表(biao)明,当晶界(jie)的取向差(cha)角(jiao)大于(yu) 15°时(shi),易(yi)沿(yan)晶(jing)界形成裂纹(图(tu) 2(d)、(e))。Guo 等[52] 对(dui)激(ji)光(guang)直(zhi)接熔化(hua)沉(chen)积 GH3536 合金的开(kai)裂行(xing)为(wei)进(jin)行(xing)研(yan)究(jiu)后(hou)发现,晶界(jie)取向(xiang)差角(jiao)在(zai) 25°~45°之(zhi)间(jian)时,晶(jing)界的界面(mian)能较(jiao)高,因此(ci)更易开(kai)裂(lie)。合(he)金(jin)的(de)化(hua)学成分与(yu)凝固(gu)末期的成(cheng)分偏析会(hui)导致凝(ning)固温度范围增大(da)、晶界(jie)液膜(mo)存在时间延长(zhang)、阻(zu)碍液(ye)相(xiang)填(tian)充(chong)枝(zhi)晶间(jian)空(kong)隙并(bing)促(cu)进晶间低熔(rong)点相形(xing)成,从而增加(jia)开(kai)裂倾向[57-59]。合金的(de)凝固温度(du)范(fan)围(wei)越(yue)大(da),越易(yi)形成凝固(gu)裂纹(wen)[60]。激光直(zhi)接熔化(hua)沉(chen)积(ji) GH3536 合金(jin)裂纹附(fu)近(jin)区域(yu)的化(hua)学(xue)元素分(fen)布(bu)如(ru)图(tu) 2(f)所(suo)示。Cloots 等[61] 认(ren)为成(cheng)分偏(pian)析(xi)是(shi)导(dao)致激光粉末(mo)床(chuang)熔(rong)融 IN738LC 合金(jin)开裂的主(zhu)要(yao)因(yin)素(su)之一。在(zai)成分(fen)偏析(xi)作用(yong)下(xia),晶界(jie)富集的元(yuan)素不仅(jin)会阻(zu)碍液(ye)相流动,还(hai)可能削(xue)弱(ruo)材料(liao)强度,从(cong)而(er)增大(da)了材(cai)料开裂(lie)倾向(xiang)[62-63]。此(ci)外,B 等低(di)熔点(dian)元(yuan)素(su)在晶界(jie)的(de)富(fu)集会(hui)增(zeng)大(da)凝固(gu)温度(du)区间(jian)和液膜(mo)存在时(shi)间(jian),进而促进(jin)裂(lie)纹(wen)形成(cheng)[56,64]。Zhou 等(deng)[65] 对激(ji)光直接熔化(hua)沉积(ji)单晶高温合金(jin)的(de)研究(jiu)结(jie)果(guo)显示(shi),枝晶间的(de)碳化物(wu)和(he)缩(suo)孔导(dao)致了凝固裂纹的萌生,而低熔点化(hua)合(he)物(wu)则引(yin)起(qi)了(le)液化裂(lie)纹(wen)的形(xing)成。有(you)研究(jiu)认(ren)为(wei) C 和(he) Mo 元素(su)在凝固过程中(zhong)的(de)偏析(xi)促进了(le)低熔(rong)点液膜(mo)的形成,导(dao)致激(ji)光直接(jie)熔(rong)化沉积 GH3536 合(he)金发生开裂[52]。

针对裂纹形(xing)成原因(yin),可通过(guo)控(kong)制(zhi)成(cheng)形(xing)工艺、调(diao)整(zheng)合(he)金(jin)成分及热(re)等(deng)静压(ya)等(deng)手段(duan)抑制(zhi)或(huo)消除增材制(zhi)造镍(nie)基高温(wen)合(he)金中(zhong)的(de)裂纹。凝(ning)固(gu)裂纹(wen)及(ji)液(ye)化(hua)裂(lie)纹(wen)形成(cheng)机理(li)示(shi)意(yi)图(tu)分别如图(tu) 2(g)、(h)所示。在(zai)成形工艺(yi)控(kong)制方(fang)面,张洁等(deng)[22] 指(zhi)出(chu),基(ji)板预(yu)热可(ke)降(jiang)低(di)激(ji)光粉(fen)末床熔融(rong) GH3625 残(can)余(yu)应(ying)力,从而抑(yi)制裂(lie)纹(wen)产(chan)生(sheng)。当(dang)预热(re)温度(du)为 300 ℃ 时,裂(lie)纹(wen)数(shu)量(liang)最(zui)少。Kontis等(deng)[64] 通过(guo)调(diao)整(zheng)电子(zi)束粉(fen)末(mo)床(chuang)熔融(rong)工艺(yi)参(can)数(shu)获得(de)了较(jiao)大(da)的晶界(jie)面积(ji)与(yu)较(jiao)小(xiao)晶粒(li)尺寸,使热应(ying)力在(zai)晶界(jie)上(shang)分(fen)布(bu)更为均(jun)匀(yun),同(tong)时(shi),调节工艺参(can)数(shu)还(hai)可(ke)降(jiang)低(di)成分偏(pian)析,抑(yi)制硼化(hua)物的形成(cheng);通过(guo)以上途(tu)径(jing),改(gai)善(shan)了镍基高(gao)温(wen)合(he)金的(de)开(kai)裂倾向(xiang)。Xu 等(deng)[66] 研究了扫(sao)描(miao)策(ce)略(lve)对激(ji)光粉末(mo)床(chuang)熔融(rong) Inconel 738 合金(jin)开(kai)裂(lie)倾(qing)向的影响,发现(xian)相(xiang)邻(lin)两层(ceng)的扫(sao)描方(fang)向(xiang)每(mei)次(ci)旋转(zhuan) 67°可促(cu)进(jin)等(deng)轴(zhou)晶形(xing)成(cheng),有(you)效(xiao)抑制裂纹形(xing)成,获得(de)良好(hao)的力(li)学(xue)性能(neng)。对(dui)于可(ke)焊性(xing)较差(cha)的(de)镍(nie)基高(gao)温合金(jin),仅(jin)调(diao)整(zheng)工艺(yi)参数(shu)难以(yi)完全防(fang)止(zhi)开裂(lie),还(hai)需对(dui)合(he)金(jin)成分进(jin)行(xing)调(diao)整。Tomus 等(deng)[67] 指出(chu),降(jiang)低(di) Si、C 元(yuan)素含(han)量(liang)可改(gai)善激(ji)光(guang)粉末床熔融 GH3536 合(he)金(jin)的抗(kang)开(kai)裂(lie)能(neng)力。Harrison 等[68] 通过增(zeng)加固溶(rong)强化元素(su)、减(jian)少(shao)杂质(zhi)元(yuan)素,降低(di)了 GH3536 合(he)金在(zai)激光(guang)粉末(mo)床熔(rong)融(rong)
成(cheng)形(xing)过程中的(de)开(kai)裂倾向(xiang),其(qi)研究结(jie)果(guo)显(xian)示,GH3536合(he)金(jin)在(zai)经(jing)过成(cheng)分(fen)调(diao)整后,裂纹密(mi)度下降(jiang)了约 65%,且高(gao)温拉伸强(qiang)度(du)显(xian)著升高(gao)。Tang 等(deng)[69] 研(yan)究了(le)合金(jin)成(cheng)分(fen)、成(cheng)形(xing)性(xing)与(yu)力学(xue)性(xing)能之间(jian)的关系(xi),并在此(ci)基(ji)础上(shang)设计了(le) ABD-850AM 与 ABD-900AM 两(liang)种(zhong)高(gao)性(xing)能(neng)、无(wu)裂(lie)纹的(de)新型增材(cai)制造用镍基(ji)高(gao)温(wen)合金(jin),他们(men)认为通过(guo)降(jiang)低合金凝固温(wen)度区间(jian)、减(jian)少晶界析(xi)出(chu)物与(yu)低熔点(dian)共晶(jing)组(zu)织(zhi)、提(ti)高(gao)合金(jin)的(de)高(gao)温塑性等(deng)手段(duan)可抑制(zhi)增(zeng)材(cai)制造(zao)镍(nie)基(ji)高(gao)温合金(jin)中的裂纹形成(cheng)。此外(wai),细(xi)化(hua)晶(jing)粒(li)可使(shi)每个晶界(jie)承受的(de)局部(bu)应变减(jian)小(xiao),并提高(gao)液(ye)相(xiang)的充(chong)形能力,从(cong)而增强合(he)金(jin)的(de)抗(kang)开裂能(neng)力(li)[52]。
Han 等(deng)[70] 通过向 GH3536 合金中(zhong)加(jia)入(ru)纳米(mi) TiC 颗粒,促(cu)进凝(ning)固过(guo)程中的异质形核(he),使小角度(du)晶(jing)界(jie)增(zeng)多(duo),减(jian)轻了粉末床(chuang)熔融 GH3536 合金(jin)的开(kai)裂(lie)倾(qing)向(xiang)。Cheng 等[71] 在(zai) GH3536 合(he)金粉(fen)末表面(mian)采(cai)用(yong)原(yuan)位化(hua)学合成(cheng)方(fang)法制备了(le) Y2O3 涂层(ceng),使用(yong)表面(mian)改(gai)性后(hou)粉末为(wei)原(yuan)材(cai)料进行(xing)激(ji)光(guang)粉(fen)末(mo)床(chuang)熔(rong)融(rong)成形,Y2O3 颗(ke)粒(li)促(cu)进了(le)凝固(gu)过程中(zhong)的异(yi)质(zhi)形(xing)核,形(xing)成(cheng)了细(xi)小的(de)组织,有(you)效抑(yi)制了(le)裂纹(wen)的萌(meng)生与(yu)扩展(zhan)。
3 、增材(cai)制造典(dian)型(xing)镍(nie)基高(gao)温(wen)合(he)金拉(la)伸(shen)性(xing)能(neng)
目前(qian),GH3536、GH4169 和 GH3625 合金的(de)增(zeng)材制造(zao)工(gong)艺(yi)相对较(jiao)为(wei)成熟,易获(huo)得致密(mi)无(wu)开裂样(yang)品。增材(cai)制(zhi)造(zao)镍基高(gao)温(wen)合金(jin)显(xian)微组织(zhi)的各(ge)向(xiang)异性(xing)导致(zhi)其力(li)学性能具有(you)明(ming)显的各(ge)向异性,热处(chu)理(li)可显著改善力学性(xing)能。增(zeng)材(cai)制造镍基(ji)高(gao)温合(he)金(jin)的(de)室温(wen)和(he)高温(wen)拉伸性(xing)能普遍(bian)高(gao)于(yu)铸(zhu)造(zao)合金(jin),但低(di)于锻造(zao)合(he)金(jin),部(bu)分合(he)金的力学(xue)性(xing)能可达到甚至超(chao)过锻件(jian)的力(li)学性(xing)能(neng)[16,72]。Wang 等[73] 对比(bi)了激光粉末(mo)床(chuang)熔融(rong)成形 GH3536 合(he)金(jin)与(yu)热(re)锻 GH3536 合(he)金(jin)的拉伸(shen)性能(neng),发(fa)现激(ji)光粉(fen)末床熔融成形 GH3536 合(he)金(jin)的(de)强度(du)高(gao)于热(re)锻合金,但(dan)断后伸(shen)长(zhang)率(lv)小(xiao)于(yu)热锻合(he)金(jin)。Wang等[74] 制(zhi)备(bei)的(de)激光(guang)粉末床(chuang)熔融成(cheng)形(xing) GH3625 合金(jin)具(ju)有与锻造(zao) GH3625 合金(jin)相(xiang)近(jin)的拉伸(shen)性(xing)能(neng)。西北(bei)工业(ye)大学的(de)研(yan)究(jiu)结(jie)果显示,激光(guang)直接(jie)熔(rong)化(hua)沉积 GH4169
合金热(re)处理(li)后的(de)力(li)学性(xing)能可(ke)满(man)足锻(duan)件标(biao)准(zhun)[75]。
Strößner 等[76] 发现(xian)经过(guo)均匀化(hua)处(chu)理(li)后的激(ji)光粉(fen)末床(chuang)熔(rong)融成形(xing) GH4169 合(he)金同锻件性(xing)能相(xiang)当。激光(guang)粉(fen)末(mo)床(chuang)熔(rong)融成形(xing) GH3536 合金(jin)经(jing)固(gu)溶(950 ℃ 保温(wen)3 h 后(hou)空冷)与(yu)热等(deng)静(jing)压处理(1125 ℃、110 MPa 保(bao)温(wen) 4 h 炉(lu)冷)后(hou),室温抗(kang)拉(la)强(qiang)度和伸长率分别可(ke)达750 MPa 与 45%~50%。随(sui)着(zhe)测(ce)试温度升(sheng)高(gao),抗拉强(qiang)度逐(zhu)渐下(xia)降(jiang),但(dan)伸长率则(ze)基本(ben)不变(bian)。当(dang)测试(shi)温度(du)超过 600 ℃ 后(hou),抗(kang)拉(la)强(qiang)度(du)和(he)伸(shen)长率均(jun)出现(xian)下(xia)降(jiang);但当(dang)测试(shi)温度升高至 815 ℃ 后(hou),虽然(ran)抗(kang)拉(la)强度仍然(ran)降低(di),但伸长(zhang)率却有(you)所(suo)升高(gao)[19]。Sanchez-Mata 等[77]的研(yan)究(jiu)结果(guo)表(biao)明(ming),GH3536 合金沉(chen)积(ji)态的(de)横(heng)向抗拉强(qiang)度、屈服(fu)强(qiang)度和(he)伸(shen)长(zhang)率(lv)分别(bie)为(wei) 924.7、790.2 MPa和 25.7%,纵(zong)向(xiang)抗(kang)拉强度、屈服强度(du)和(he)伸长(zhang)率分(fen)别(bie)为(wei) 777.1、662.8 MPa 和(he) 22.3%;在 1177 ℃ 下保(bao)温(wen)2 h 空冷固溶(rong)处理后(hou),横向(xiang)抗拉强(qiang)度(du)、屈(qu)服(fu)强(qiang)度(du)和伸(shen)长(zhang)率(lv)分别为(wei) 792、384.8 MPa 和(he) 50.3%,纵(zong)向抗(kang)拉强(qiang)度(du)、屈(qu)服强(qiang)度(du)和(he)伸(shen)长(zhang)率(lv)分(fen)别(bie)为(wei) 728.3、412.8 MPa 和43.4%。在(zai)相同(tong)的(de)热(re)处理(li)制(zhi)度(du)下(xia),Montero-Sistiaga等(deng)[78] 的研(yan)究(jiu)结果显(xian)示,GH3536 合金的横(heng)向(xiang)抗(kang)拉(la)强(qiang)度(du)、屈服强(qiang)度(du)和(he)伸(shen)长率分(fen)别(bie)为(wei) 709.5、325.5 MPa 和(he)44.3%,纵(zong)向(xiang)抗(kang)拉强度、屈服(fu)强(qiang)度和(he)伸长(zhang)率分别(bie)为662.2、320.5 MPa 和 44.9%。其(qi)研究结(jie)果(guo)还(hai)表(biao)明,GH3536 合(he)金(jin)沉积(ji)态的(de)横(heng)向抗拉强(qiang)度、屈服(fu)强(qiang)度和伸(shen)长率分(fen)别为(wei) 787.5、552 MPa 和 31.5%,纵向抗(kang)拉强度、屈服强(qiang)度和(he)长伸率(lv)分(fen)别(bie)为(wei) 494.3、682.2 MPa和 36.9%;经 800 ℃ 下保(bao)温(wen) 2 h 空冷固(gu)溶(rong)处理(li)后,材(cai)料(liao)的(de)横(heng)向(xiang)抗(kang)拉(la)强度(du)、屈服(fu)强度和伸(shen)长(zhang)率(lv)分(fen)别为(wei)798.1、508.3 MPa 和 31.8%,纵向抗(kang)拉(la)强(qiang)度、屈服(fu)强(qiang)度(du)和(he)伸(shen)长率分(fen)别为 728.3、484.4 MPa 和(he) 36.3%[78]。
激(ji)光(guang)粉(fen)末床(chuang)熔融成(cheng)形 GH3625 合金(jin)的(de)沉(chen)积态抗拉(la)强(qiang)度(du)、屈服强(qiang)度(du)和(he)伸(shen)长率(lv)分(fen)别为(925±13)、(652±10) MPa 和(32±3)%;经 900 ℃ 保温(wen) 1 h 固(gu)溶(rong)处(chu)理后(hou),抗拉(la)强度、屈(qu)服强度和(he)伸长率分别(bie)为(wei)(869±7)、(567±15) MPa 和(38±1)%;经(jing) 1100 ℃ 保温(wen) 1 h 固溶处(chu)理(li)后(hou),抗拉强(qiang)度、屈(qu)服强度和伸(shen)长率分别(bie)为(wei)(886±11)、(409±14) MPa 和(he)(56±5)%。对(dui)激光(guang)直接熔化(hua)沉(chen)积 GH3625 合(he)金,其(qi)沉(chen)积(ji)态抗(kang)拉强(qiang)度(du)、屈服强度(du)和伸长率分别(bie)(1073±5)、(723±23) MPa 和(26±2)%;经(jing) 900 ℃ 保(bao)温(wen) 1 h 固溶(rong)处(chu)理后,抗(kang)拉(la)强(qiang)度(du)、屈服(fu)强度(du)和(he)伸长(zhang)率(lv)分(fen)别为(1084±2)、(654±15)MPa 和(he)(27±2)%;经 1100 ℃ 保(bao)温(wen) 1 h 固(gu)溶(rong)处理(li)后(hou),抗拉(la)强(qiang)度(du)、屈服(fu)强度和(he)伸长(zhang)率分(fen)别为(991±13)、(532±22) MPa 和(he)(43±1)%[79]。图(tu) 3~图 5 总(zong)结(jie)了部(bu)分(fen)文(wen)献中增(zeng)材(cai)制(zhi)造 GH3536、GH4169 和 GH3625合金沉(chen)积(ji)态及经不(bu)同(tong)热处(chu)理/热等(deng)静压(ya)制度(du)处理(li)的(de)室温/高(gao)温(wen)拉(la)伸(shen)性能(neng)。可以(yi)看到,对(dui)于(yu) GH3536 与GH3625 合(he)金,热(re)处(chu)理虽然导(dao)致(zhi)了强(qiang)度(du)下(xia)降,但促(cu)进了(le)塑(su)性的改(gai)善(shan)。对(dui)于 GH4169 合金,热(re)处理提升了(le)室(shi)温(wen)强(qiang)度,但(dan)塑(su)性有所降(jiang)低。值(zhi)得(de)注意(yi)的(de)是(shi),增(zeng)材(cai)制造(zao)镍基高温合(he)金力学性(xing)能的偏差(cha)较(jiao)大。即(ji)便是(shi)同一种材(cai)料,不同(tong)文(wen)献报(bao)道(dao)的力学(xue)性(xing)能(neng)结果也存(cun)在一(yi)定差(cha)异(yi)。这可能与(yu)合(he)金(jin)内部(bu)缺陷与显(xian)微(wei)组织(zhi)随(sui)成形工艺(yi)与热(re)处(chu)理/热(re)等静压(ya)制(zhi)度的变(bian)化(hua)有关(guan)。这一现象限(xian)制了(le)增材制(zhi)造(zao)镍(nie)基(ji)高(gao)温(wen)合金(jin)的工程应(ying)用(yong),是现阶段亟需(xu)解决(jue)的问(wen)题之(zhi)一。



4 、增(zeng)材(cai)制(zhi)造(zao)镍(nie)基高温(wen)合(he)金应用
目(mu)前,增(zeng)材(cai)制(zhi)造镍基高温合(he)金(jin)构件(jian)已(yi)在(zai)航(hang)空(kong)发(fa)动(dong)机(ji)及燃(ran)气(qi)轮机中得(de)到了初步应(ying)用(yong)。在航(hang)空(kong)发(fa)动机领域(yu),国(guo)内的中国(guo)航(hang)发(fa)北京(jing)航(hang)空材(cai)料(liao)研(yan)究院(yuan)、中国(guo)航发商(shang)用(yong)航空发(fa)动机(ji)有限公(gong)司(si)、北(bei)京航(hang)空航(hang)天大(da)学(xue)、西(xi)北(bei)工(gong)业(ye)大学(xue)、华(hua)中(zhong)科(ke)技(ji)大学(xue)、中国科学院(yuan)金属(shu)研究(jiu)所、铂力特等单位(wei)对(dui)燃油(you)喷(pen)嘴(zui)、涡流器(qi)、预旋(xuan)喷(pen)嘴等(deng)航(hang)空发(fa)动机(ji)镍(nie)基高温(wen)合金零(ling)件(jian)的(de)增材(cai)制(zhi)造(zao)进行(xing)了(le)研(yan)究(jiu)。采(cai)用增(zeng)材制(zhi)造技(ji)术(shu),可使燃油喷嘴的加(jia)工周期(qi)由 6 周左右缩短(duan)至一(yi)周以内(nei),涡流器的(de)加(jia)工周期(qi)由(you)一(yi)个月左(zuo)右(you)缩(suo)短(duan)至 3~5 天(tian)[1,97]。国(guo)际上,赛(sai)峰(feng)公司(si)采用增(zeng)材制(zhi)造(zao)技(ji)术(shu)成(cheng)形(xing)的镍基高(gao)温合(he)金(jin)涡(wo)轮(lun)喷(pen)嘴通(tong)过(guo)了欧洲航空(kong)安(an)全局认(ren)证[3]。印(yin)度(du)斯坦航(hang)空(kong)公司制造了 25 kN 发动(dong)机(ji)的(de)镍(nie)基(ji)高(gao)温合金(jin)燃烧(shao)室(shi)机(ji)匣(xia)[3]。罗罗公司(si)在(zai)进行新(xin)一代燃烧(shao)室(shi)制(zhi)造时,首(shou)先采(cai)用增(zeng)材制造(zao)技术(shu)制造(zao) 8 个燃(ran)烧(shao)室组件(jian) , 再 通 过 激 光 焊(han) 将(jiang) 组 件(jian) 焊 接 成 1 个 整 体(图 6(b))。与(yu)传(chuan)统(tong)工(gong)艺相(xiang)比(bi),采(cai)用该技(ji)术路(lu)线(xian)进(jin)行 燃(ran) 烧(shao) 室 加 工 仅(jin) 需 3.5 个 月 , 加 工(gong) 周 期(qi) 缩(suo) 短(duan) 约70%[98]。霍尼(ni)韦尔公(gong)司利用(yong)电子(zi)束(shu)熔融(rong)技术(shu)制备(bei)的 HTF7000 发(fa)动(dong)机(ji)管腔,将(jiang)原(yuan)有(you)的 8 个(ge)零件合(he)并为(wei) 1 个,不(bu)但使(shi)交(jiao)货(huo)周期(qi)大幅(fu)缩(suo)短,还(hai)降(jiang)低了(le)制(zhi)造成本[3]。在(zai)燃(ran)气(qi)轮(lun)机领域(yu), GE 公(gong)司于 2021 年采(cai)用激光(guang)粉末(mo)床熔(rong)融成(cheng)形 LM9000 燃(ran)气轮机适(shi)配(pei)器盖(图(tu) 6(c))取(qu)代了原(yuan)有的铸(zhu)造(zao)零件(jian)。这(zhe)些(xie)零(ling)件(jian)均(jun)为(wei)一(yi)对一替换,没有(you)进(jin)行重(zhong)新设计(ji)或(huo)零(ling)件合(he)并,仅(jin)针(zhen)对增材(cai)制造工艺(yi)进行了(le)微(wei)小(xiao)调(diao)整。传统的(de)铸造零(ling)部件通(tong)常需(xu)要 12~18 个月(yue)的生产(chan)时(shi)间,而增材(cai)制(zhi)造仅(jin)需要 10 个(ge)月(yue)时间(jian),采用增(zeng)材制(zhi)造(zao)技术削减了约 35% 的(de)制造成(cheng)本[99-100]。美(mei)国橡(xiang)树岭国(guo)家实(shi)验室(shi)与 Solar Turbines 合(he)作(zuo),利(li)用(yong)电(dian)子束熔(rong)融技(ji)术制备了 Inconel 738 合(he)金(jin)发(fa)电(dian)机涡轮(lun)叶片(pian)(图(tu) 6(d))。

他们计(ji)划(hua)后(hou)续(xu)利(li)用(yong)增(zeng)材(cai)制(zhi)造技术(shu)成(cheng)形(xing)复(fu)杂内部(bu)冷却(que)通道,使涡轮机(ji)在(zai)更高温(wen)度下运行,以(yi)提(ti)高发电(dian)效(xiao)率(lv)[101-102]。为(wei)改(gai)善镍基高(gao)温合(he)金涡(wo)轮(lun)叶片(pian)的(de)热传(chuan)递和冲击(ji)冷却(que)效果,德(de)国西门(men)子公司(si)采(cai)用(yong)激光粉末(mo)床熔(rong)融(rong)技(ji)术为 SGT-400 燃(ran)气轮机制(zhi)备(bei)了具有复(fu)杂(za)内(nei)部结构的叶(ye)片(pian)(图(tu) 6(e)),叶(ye)片已在 1250 ℃下(xia)通过了(le) 13000 r/min 旋(xuan)转速(su)度(du)条(tiao)件下的满负荷考核[1,103-104]。2017 年(nian),曼(man)恩机械在 MGT6100 燃气轮(lun)机中(zhong)使用了增(zeng)材(cai)制(zhi)造涡(wo)轮(lun)叶(ye)片(pian),率先(xian)在(zai)世界上实现了复(fu)杂(za)结构增材制(zhi)造(zao)高温(wen)合金涡轮导(dao)向叶片(pian)的(de)应用[105]。
5、 总结与(yu)展(zhan)望(wang)
本(ben)文(wen)综述(shu)了增(zeng)材(cai)制(zhi)造(zao)镍(nie)基高温(wen)合金在组(zu)织、缺陷(xian)及性能方面的研究进(jin)展(zhan),并(bing)介绍了增材(cai)制(zhi)造镍(nie)基(ji)高温(wen)合金(jin)零(ling)件在航(hang)空发(fa)动机(ji)及(ji)燃气(qi)轮(lun)机中(zhong)的(de)应用情(qing)况(kuang)。可以看到(dao),虽(sui)然增材(cai)制造(zao)镍基(ji)高温(wen)合金(jin)在(zai)理(li)论研(yan)究及工(gong)程(cheng)应(ying)用(yong)方(fang)面都(dou)已(yi)取(qu)得(de)巨(ju)大突(tu)破,但(dan)在组(zu)织(zhi)性(xing)能调(diao)控(kong)及缺(que)陷(xian)控制等(deng)方面(mian)仍(reng)存在一定问(wen)题(ti),要(yao)实现(xian)增材制造镍基(ji)高(gao)温合(he)金构件(jian)在航(hang)空发动(dong)机(ji)与燃气轮(lun)机(ji)中(zhong)更广(guang)泛的(de)应(ying)用,还需(xu)在(zai)以下(xia)方面(mian)进一步(bu)开(kai)展工作(zuo):
(1)设计增(zeng)材制造(zao)专用镍基高(gao)温(wen)合(he)金成分(fen)合(he)金(jin)成(cheng)分
设(she)计要(yao)同(tong)时考(kao)虑(lv)材(cai)料的使用性(xing)能与(yu)加工性能,加工(gong)工(gong)艺(yi)对合(he)金(jin)成分(fen)设(she)计具有(you)重要影(ying)响(xiang)。目(mu)前,增(zeng)材制(zhi)造镍(nie)基(ji)高(gao)温合(he)金(jin)主要使(shi)用(yong)传统牌号(hao)成分,而(er)传(chuan)统镍(nie)基高(gao)温(wen)合(he)金的(de)成分是基于铸(zhu)造、锻造(zao)等工艺开发(fa)的(de),并(bing)不完(wan)全(quan)适(shi)合(he)增材制(zhi)造工艺。
例如,易(yi)开(kai)裂(lie)是(shi)阻碍(ai)增(zeng)材(cai)制造(zao)镍(nie)基(ji)高(gao)温合(he)金应(ying)用的重要障(zhang)碍之(zhi)一(yi),造(zao)成这(zhe)一问题的主要(yao)原因(yin)是部分牌号镍基(ji)高(gao)温合(he)金(jin)的(de)成(cheng)分(fen)在(zai)增(zeng)材制造工(gong)艺条件下易(yi)形成(cheng)凝固(gu)裂纹(wen)及液化(hua)裂(lie)纹(wen)。因(yin)此(ci),需要(yao)针对增(zeng)材(cai)制(zhi)造(zao)工(gong)艺特点进行(xing)合金(jin)成分(fen)设计(ji),充分(fen)发(fa)挥(hui)增(zeng)材制造(zao)镍(nie)基(ji)高(gao)温(wen)合金的性能(neng)。
(2)建(jian)立增材(cai)制(zhi)造(zao)镍(nie)基高(gao)温(wen)合(he)金专(zhuan)用热(re)处(chu)理/热(re)等静(jing)压工(gong)艺(yi)
增材(cai)制造过(guo)程具(ju)有高温度(du)梯(ti)度(du)、高(gao)冷却(que)速度(du)和原位(wei)热循环等特(te)点(dian)。与传统工艺制备镍基(ji)高温(wen)合(he)金相比,增材制造镍(nie)基高(gao)温合(he)金(jin)的(de)显(xian)微(wei)组织表(biao)现出(chu)明(ming)显的(de)各(ge)向(xiang)异性,且第(di)二相的种(zhong)类、含(han)量(liang)及(ji)分(fen)布(bu)等(deng)也可(ke)能存在(zai)差异,导(dao)致(zhi)传(chuan)统热处理(li)制度不能(neng)完全适用(yong)于增(zeng)材制造(zao)镍基(ji)高(gao)温(wen)合(he)金。此外,部分(fen)牌(pai)号镍(nie)基高温合金(jin)在增材制(zhi)造(zao)过程中易形成(cheng)裂(lie)纹,需(xu)要进行(xing)热(re)等静压(ya)处理(li)使裂纹闭(bi)合,改(gai)善力学性能。但是(shi),热等静(jing)压(ya)引起的显(xian)微(wei)组织(zhi)变化(hua)可能导(dao)致力(li)学(xue)性(xing)能恶(e)化。因(yin)此,需要(yao)依据增材制造镍(nie)基(ji)高(gao)温合金(jin)显微组(zu)织与缺陷(xian)特点有针对(dui)性(xing)地建立(li)热处理及热等(deng)静压(ya)工(gong)艺(yi),改善力学性能。
(3)开发(fa)单晶高温合(he)金叶片(pian)增材(cai)制(zhi)造(zao)技术
单(dan)晶高(gao)温合(he)金具(ju)有(you)出(chu)色的(de)高温性能,是(shi)制造航(hang)空发(fa)动机涡(wo)轮(lun)叶(ye)片(pian)的(de)重(zhong)要材(cai)料。目(mu)前(qian),单晶高(gao)温(wen)合(he)金叶片(pian)主要通(tong)过(guo)定(ding)向(xiang)凝(ning)固(gu)技术(shu)进行制备(bei)。但(dan)是,铸造(zao)合(he)金组(zu)织(zhi)粗大、偏析严重、易形成(cheng)铸造缺(que)陷(xian),制约(yue)了(le)高温(wen)合(he)金(jin)性能(neng)的(de)充分发(fa)挥(hui)。增(zeng)材(cai)制造过(guo)程(cheng)中(zhong),熔(rong)池具有极(ji)高(gao)的(de)温(wen)度梯度(du)与冷(leng)却(que)速度,有(you)助于减(jian)少成(cheng)分偏析(xi)、疏(shu)松以及组(zu)织(zhi)粗大等问题。通(tong)过增(zeng)材(cai)制造(zao)技(ji)术进行(xing)单晶高温(wen)合(he)金(jin)叶片(pian)制(zhi)备,可(ke)进一(yi)步(bu)提升其(qi)力学性(xing)能。然而(er),增材制(zhi)造技(ji)术目前主要用(yong)于(yu)叶(ye)片(pian)修(xiu)复(fu),尚未用于(yu)叶片(pian)制造。近年来(lai),有(you)研(yan)究(jiu)发现(xian)使用(yong)电子束(shu)粉(fen)末(mo)床熔(rong)融(rong)技术(shu)及激光光(guang)束整(zheng)形技术可(ke)在多(duo)晶(jing)合(he)金(jin)基(ji)体(ti)上(shang)实(shi)现(xian)单(dan)晶高温(wen)合金制(zhi)备(bei)。这一发(fa)现(xian)使得直接(jie)使用增材(cai)制造技(ji)术进(jin)行单晶(jing)高(gao)温(wen)合(he)金叶(ye)片成形(xing)成为可(ke)能(neng),有(you)必要(yao)进(jin)行(xing)系统(tong)深(shen)入研(yan)究(jiu)。
(4)发展(zhan)增(zeng)材(cai)制造(zao)实时(shi)监测(ce)控制技术(shu)
增(zeng)材制造(zao)镍基高(gao)温(wen)合金(jin)的(de)显(xian)微组(zu)织(zhi)是(shi)在(zai)快速(su)凝固及(ji)原(yuan)位热循(xun)环过程(cheng)中(zhong)形(xing)成的,熔池(chi)的凝(ning)固条件(jian)及原位(wei)热(re)循环(huan)的(de)升(sheng)温/冷(leng)却(que)速(su)率是增材制(zhi)造(zao)镍基(ji)高(gao)温合(he)金显微组织(zhi)的(de)主要影响(xiang)因(yin)素(su),决定了共(gong)晶组织(zhi)、γ 相(xiang)、γ′相(xiang),析出(chu)相等的(de)分(fen)布、含量及(ji)尺(chi)寸(cun)等(deng)特(te)征。此外(wai),增(zeng)材制(zhi)造(zao)过(guo)程(cheng)的(de)温度场(chang)及应力(li)场变(bian)化对材(cai)料变形(xing)开裂具(ju)有重(zhong)要影(ying)响(xiang)。尤(you)其(qi)是对于(yu)易(yi)开裂(lie)镍(nie)基(ji)高温(wen)合金(jin),需严格控制(zhi)成(cheng)形过程(cheng)温度(du)场及(ji)应(ying)力(li)场(chang)才(cai)能(neng)获得成(cheng)形质量(liang)良好(hao)的(de)零件(jian)。同时(shi),粉末及其(qi)他杂质在(zai)成形(xing)过(guo)程中(zhong)的飞(fei)溅,可(ke)能(neng)导致(zhi)未(wei)熔合、夹(jia)杂、层(ceng)间开(kai)裂等缺(que)陷(xian)。因此,有必(bi)要发(fa)展(zhan)增材制(zhi)造实时监(jian)测控(kong)制(zhi)技(ji)术(shu),依(yi)据(ju)温度、图像等信(xin)号对(dui)工艺(yi)参(can)数(shu)进行(xing)调控,提(ti)高增材制(zhi)造镍(nie)基高温(wen)合金(jin)成形质量稳定(ding)性(xing)。
(5)创新(xin)增(zeng)材(cai)制(zhi)造零件(jian)内表面处(chu)理技术(shu)
由(you)于(yu)增材制(zhi)造(zao)是(shi)逐(zhu)层叠加(jia)过程(cheng),因此构(gou)件(jian)表(biao)面(mian)通(tong)常(chang)较(jiao)为粗(cu)糙(cao)。虽(sui)然(ran)通(tong)过(guo)改(gai)进原材(cai)料粉(fen)末质(zhi)量(liang)、调整成(cheng)形过(guo)程(cheng)零(ling)件摆(bai)放位(wei)置、优(you)化(hua)工艺参(can)数等手(shou)段(duan)可在一(yi)定程(cheng)度(du)上改(gai)善(shan)表(biao)面质量(liang),但(dan)无法完全解(jie)决表(biao)面(mian)粗糙(cao)问(wen)题(ti)。因(yin)此,增(zeng)材制(zhi)造(zao)零(ling)件必(bi)须经过表(biao)面处(chu)理(li)后方(fang)可使(shi)用。增(zeng)材(cai)制(zhi)造零件通常(chang)具有(you)复杂(za)的内(nei)部(bu)结(jie)构(gou),而(er)现(xian)有(you)的(de)表面(mian)处(chu)理手(shou)段(duan)(磨粒(li)流、电化学腐蚀、水(shui)射(she)流(liu)、振动(dong)抛(pao)光(guang)、喷砂等(deng))难以对复杂(za)内表面进行(xing)有(you)效处理(li),是限(xian)制增(zeng)材(cai)制(zhi)造零件工程(cheng)应(ying)用(yong)的(de)关键(jian)技术(shu)瓶颈之(zhi)一。因(yin)此(ci),需(xu)要开发新的内表(biao)面处(chu)理技(ji)术,促进(jin)增材制(zhi)造(zao)零(ling)件(jian)应(ying)用(yong)。
(6)引入(ru)人(ren)工智能技术
人(ren)工(gong)智能(neng)具有强(qiang)大(da)的(de)数据(ju)分(fen)析(xi)处理能力(li),且(qie)自动化程(cheng)度(du)和(he)工作效(xiao)率更(geng)高(gao)。利用(yong)人工智能(neng)对设(she)计数(shu)据进(jin)行分析(xi),能(neng)突破(po)人类思维(wei)限(xian)制,进(jin)一(yi)步(bu)实(shi)现零(ling)件(jian)结(jie)构(gou)的(de)快速优化(hua)设计。此外(wai),使用人工(gong)智(zhi)能(neng)对增(zeng)材(cai)制造(zao)过程(cheng)中(zhong)产生(sheng)的数(shu)据进(jin)行处(chu)理(li),预(yu)测(ce)可能产生的(de)缺(que)陷(xian)及(ji)何(he)时(shi)需(xu)要对(dui)设(she)备进(jin)行(xing)维护(hu)。不仅可(ke)在(zai)生(sheng)产过(guo)程中(zhong)提(ti)前(qian)对工艺(yi)参(can)数进(jin)行(xing)调(diao)整,还(hai)可减少计(ji)划(hua)外(wai)停(ting)机时间(jian),提(ti)高(gao)产(chan)品合格(ge)率及生产(chan)效(xiao)率(lv)。同(tong)时,采(cai)用人工(gong)智能(neng)对材料数(shu)据(ju)进(jin)行挖掘(jue),建立(li)“材(cai)料(liao)成(cheng)分(fen)-冶(ye)金(jin)缺陷(xian)-力学(xue)性能”关系,在实(shi)验之前(qian)进(jin)行(xing)成分(fen)优(you)化(hua)筛选(xuan),节约(yue)时(shi)间(jian)和(he)资源,加(jia)速增材(cai)制(zhi)造(zao)专(zhuan)用镍(nie)基高(gao)温合金成(cheng)分(fen)开(kai)发(fa)。因此,有必(bi)要(yao)将人工智(zhi)能(neng)与增(zeng)材(cai)制造技术(shu)进行(xing)结合(he),促进(jin)增(zeng)材(cai)制造技(ji)术(shu)快(kuai)速(su)发(fa)展(zhan)。
(7)推动增材制(zhi)造技术(shu)创新
虽(sui)然(ran)使用现(xian)有(you)增(zeng)材制造技(ji)术生产的(de)零件已(yi)在(zai)航空发(fa)动机与(yu)燃(ran)气轮机中实(shi)现应用,但未来仍需进(jin)一(yi)步对增材(cai)制造技(ji)术(shu)进(jin)行(xing)改(gai)进(jin)创(chuang)新(xin),满(man)足更大的(de)应(ying)用需求。通(tong)过(guo)增材(cai)制造技术的发展(zhan),优(you)化(hua)零(ling)件成(cheng)形(xing)精(jing)度(du)、改(gai)善设(she)备稳定(ding)性、提(ti)高制造(zao)效率。同时,将(jiang)增(zeng)材(cai)制造(zao)技(ji)术(shu)与(yu)智能(neng)制造、数字化工厂等(deng)技术(shu)相结(jie)合(he),实(shi)现增材制(zhi)造(zao)的数字化(hua)转(zhuan)型(xing)。此(ci)外(wai),还(hai)需要考虑环保和(he)可持(chi)续发(fa)展问(wen)题,实(shi)现(xian)增(zeng)材制造技(ji)术(shu)的(de)绿(lv)色化、环保(bao)化、可(ke)持(chi)续发展化(hua)。
参考(kao)文献:
[1]孙晓(xiao)峰,宋巍,梁静(jing)静,等(deng). 激(ji)光增材(cai)制(zhi)造高温合(he)金材料(liao)与工艺研究(jiu)进(jin)展(zhan) [J]. 金属学报(bao),2021,57(11):1471-83.
SUN X F,SONG W,LIANG J J,et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing [J]. Acta Metallurgica Sinica,2021,57(11):1471-1483.
[2]ZHU A Z,BASOALTO B H,WARNKEN A N,et al. A model for the creep deformation behaviour of nickel-based single crystal superalloys[J]. Acta Materialia, 2012,60(12):4888-900.
[3]刘伟(wei),李(li)能,周(zhou)标,等(deng). 复(fu)杂(za)结构与(yu)高性能(neng)材(cai)料增(zeng)材制造技术进(jin)展 [J]. 机(ji)械工程学报,2019,55(20):128-151.
LIU W,LI N,ZHOU B,et al. Progress in additive man-ufacturing on complex structures and high-performance materials[J]. Journal of Mechanical Engineering,2019,55(20):128-151.
[4]HUANG S,SUN B,GUO S. Microstructure and prop-erty evaluation of TA15 titanium alloy fabricated by selective laser melting after heat treatment[J]. Optics & Laser Technology,2021,144:107422.
[5]TAN C,WENG F,SUI S,et al. Progress and perspec-tives in laser additive manufacturing of key aeroengine materials[J]. International Journal of Machine Tools and Manufacture,2021,170:103804.
[6]YONG C K,GIBBONS G J,WONG C C,et al. A criti-cal review of the material characteristics of additive manufactured IN718 for high-temperature application [J]. Metals,2020,10(12):1576.
[7]冀国锋(feng),李俊(jun)励,杨进飞. 风(feng)扇(shan)/压(ya)气机增(zeng)材(cai)制(zhi)造(zao)技术的应(ying)用(yong)与(yu)发(fa)展趋势(shi) [J]. 航(hang)空(kong)动(dong)力(li),2020(2):75-78.
JI G F,LI J L,YANG J F. Additive manufacturing tech-nology for fan and compressor[J]. Aerospace Power,2020(2):75-78.
[8]王天元(yuan),黄(huang)帅,周(zhou)标,等(deng). 航(hang)空装备(bei)激(ji)光增(zeng)材(cai)制(zhi)造技(ji)术(shu)发(fa)展及路线图(tu) [J]. 航(hang)空材(cai)料学报,2023,43(1):1-17.
WANG T Y,HUANG S,ZHOU B,et al. Development and roadmap of laser additive manufacturing technology for aviation equipment[J]. Journal of Aeronautical Materials,2023,43(1):1-17.
[9]KURZ W, GIOVANOLA B, TRIVEDI R. Theory of microstructural development during rapid solidification [J]. Acta Metallurgica,1986,34(5):823-830.
[10]GÄUMANN M,HENRY S,CLÉTON F,et al. Epitax-ial laser metal forming: analysis of microstructure for-mation[J]. Materials Science and Engineering: A,1999,271(1):232-241.
[11]GÄUMANN M, BEZENÇON C, CANALIS P, et al.Single-crystal laser deposition of superalloys:processing–microstructure maps[J]. Acta Materialia,2001,49(6):1051-1062.
[12]WILSON J M,PIYA C,SHIN Y C,et al. Remanufac-turing of turbine blades by laser direct deposition with its energy and environmental impact analysis[J]. Journal of Cleaner Production,2014,80:170-178.
[13]ZHANG D,WEN N,CAO X,et al. Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy[J]. Materials Science and Engi-neering:A,2015,644:32-40.
[14]XU X, GANGULY S, DING J, et al. Enhancing mechanical properties of wire + arc additively manufac-tured Inconel 718 superalloy through in-process thermo-mechanical processing[J]. Materials & Design, 2018,160:1042-1051.
[15]TAYON W A,SHENOY R,REDDING M R,et al. Cor-relation between microstructure and mechanical proper-ties in an Inconel 718 deposit produced via electron beam freeform fabrication[J]. Journal of Manufacturing Science and Engineering,2014,136:061005.
[16]CHLEBUS E,GRUBER K,KUZNICKA B,et al. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting[J]. Materials Science and Engineering: A,2015,639:647-655.
[17]DENG D, RU L P, BRODIN H, et al. Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: sample orientation dependence and effects of post heat treatments[J]. Materials Sci-ence and Engineering:A,2018,713:294-306.
[18]JINOOP A N,PAUL C P,BINDRA K S. Laser-assisted directed energy deposition of nickel super alloys: a review[J]. Proceedings of the Institution of Mechanical Engineers,Part L,2019,233(11):2376-400.
[19]郑寅(yin)岚(lan),何(he)艳丽(li),陈(chen)晓(xiao)晖(hui),等(deng). 选(xuan)区激(ji)光(guang)熔化(hua)成(cheng)形GH3536 合金的高温(wen)拉伸(shen)性能(neng)及(ji)断(duan)裂行为(wei)分析(xi) [J]. 中国激(ji)光,2020,47(8):0802008.
ZHENG Y L,HE Y L,CHEN X H,et al. Elevated-tem-perature tensile properties and fracture behavior of GH3536 alloy formed via selective laser melting[J]. Chinese Journal of Lasers,2020,47(8):0802008.
[20]闵师领,侯(hou)娟,张(zhang)恺,等(deng). 激(ji)光粉末床(chuang)技术制造 GH3536合 金 研(yan) 究(jiu) 现(xian) 状(zhuang) [J]. 激 光(guang) 与(yu) 光 电(dian) 子 学(xue) 进 展(zhan) , 2021,58(17):98-109.
MIN S L,HOU J,ZHANG K,et al. Laser powder bed fusion of GH3536 alloy[J]. Laser & Optoelectronics Progress,2021,58(17):98-109.
[21]WONG H,DAWSON K,RAVI G A,et al. Multi-laser powder bed fusion benchmarking-initial trials with Inconel 625[J]. The International Journal of Advanced Manufacturing Technology,2019,105(7):2891-906.
[22]张洁,李(li)帅,魏青(qing)松,等. 激光(guang)选区熔(rong)化(hua) Inconel625 合(he)金开裂行为(wei)及抑制研究(jiu) [J]. 稀(xi)有金属,2015,39(11):961-966.
ZHANG J,LI S,WEI Q S,et al. Cracking behavior and inhibiting process of Inconel 625 alloy formed by selec-tive laser melting[J]. Rare Metals,2015,39(11):961-966.
[23]KARMUHILAN M,KUMANAN S. A review on addi-tive manufacturing processes of Inconel 625[J]. Journal of Materials Engineering and Performance, 2021,31(4):2583-2592.
[24]WANG J,WANG H,GAO H,et al. Effect of microseg-regation behaviors on solidification microstructure of IC10 superalloy fabricated by directed energy deposi-tion[J]. Additive Manufacturing,2022,59:103158.
[25]HOSSEINI E,POPOVICH V A. A review of mechani-cal properties of additively manufactured Inconel 718[J]. Additive Manufacturing,2019,30:100877.
[26]NI M,LIU S,CHEN C,et al. Effect of heat treatment on the microstructural evolution of a precipitation-hard-ened superalloy produced by selective laser melting[J].Materials Science and Engineering:A,2019,748:275-285.
[27]TOMUS D, TIAN Y, ROMETSCH P A, et al. Influ-ence of post heat treatments on anisotropy of mechani-cal behaviour and microstructure of Hastelloy-X parts produced by selective laser melting[J]. Materials Sci-ence and Engineering:A,2016,667:42-53.
[28]李雅莉(li),雷力明(ming),侯(hou)慧鹏,等(deng). 热(re)工艺对(dui)激光选(xuan)区(qu)熔(rong)化Hastelloy X 合金(jin)组(zu)织及拉(la)伸(shen)性(xing)能的影响(xiang) [J]. 材(cai)料工(gong)程,2019,47(5):100-106.
LI Y L,LEI L M,HOU H P,et al. Effect of heat pro-cessing on microstructures and tensile properties of selective laser melting Hastelloy X alloy[J]. Journal of Materials Engineering,2019,47(5):100-106.
[29]TIAN Z,ZHANG C,WANG D,et al. A review on laser powder bed fusion of Inconel 625 nickel-based alloy[J].Applied Sciences,2019,10(1):81.
[30]WANG Y,LI N,JIA C,et al. Effects of solution treat-ment on the microstructural evolution and tensile proper-ties of GH3230 superalloy manufactured by laser melt-ing deposition [J]. Materials Characterization 2022,194:112339.
[31]黄 文(wen) 普(pu) , 喻(yu) 寒(han) 琛(chen) , 殷 杰(jie) , 等 . 激(ji) 光 选 区 熔 化 成(cheng) 形(xing)K4202 镍(nie)基(ji)铸(zhu)造高(gao)温(wen)合(he)金的组织和性能 [J]. 金属(shu)学(xue)报,2016,52(9):1089-1095.
HUANG W P,YU H C,YIN J,et al. Microstructure and mechanical properties of K4202 cast nickle based super-alloy fabricatied by selective laser melting[J]. Acta Metallurgica Sinica,2016,52(9):1089-1095.
[32]JODI D E,KITASHIMA T,KOIZUMI Y,et al. Manu-facturing single crystals of pure nickel via selective laser melting with a flat-top laser beam[J]. Additive Manu-facturing Letters,2022,3:100066.
[33]RAMSPERGER M, KORNER C. Selective electron beam melting of the single crystalline nickel-base super-alloy CMSX-4: from columnar grains to a single crystal [C]//Superalloys 2016:Proceedings of the 13th Interna-tional Symposium on Superalloys. Nürnberg: [s.n.],2016: 341-349
[34]KÖRNER C, RAMSPERGER M, MEID C, et al.Microstructure and mechanical properties of CMSX-4 single crystals prepared by additive manufacturing[J]. Metallurgical and Materials Transactions A, 2018,49(9):3781-3792.
[35]FERNANDEZ-ZELAIA P, KIRKA M M, ROSSY A M, et al. Nickel-based superalloy single crystals fabri-cated via electron beam melting[J]. Acta Materialia, 2021,216:117133.
[36]CHAUVET E,TASSIN C,BLANDIN J J,et al. Produc-ing Ni-base superalloys single crystal by selective elec-tron beam melting[J]. Scripta Materialia,2018,152:15-19.
[37]LI Y,YU Y F,WANG Z B,et al. Additive manufactur-ing of nickel-based superalloy single crystals with IN-738 alloy[J]. Acta Metallurgica Sinica,2022,35:369-374.
[38]LIANG Y J,CHENG X,WANG H M. A new microseg-regation model for rapid solidification multicomponent alloys and its application to single-crystal nickel-base superalloys of laser rapid directional solidification[J].Acta Materialia,2016,118:17-27.
[39]LIANG Y J,LI J,LI A,et al. Solidification path of sin-gle-crystal nickel-base superalloys with minor carbon additions under laser rapid directional solidification con-ditions[J]. Scripta Materialia,2017,127:58-62.
[40]LIANG Y J,LI J,LI A,et al. Experimental optimiza-tion of laser additive manufacturing process of single-crystal nickel-base superalloys by a statistical experi-ment design method[J]. Journal of Alloys and Com-pounds,2017,697:174-81.
[41]LIANG Y J,LI A,CHENG X,et al. Prediction of pri-mary dendritic arm spacing during laser rapid direc-tional solidification of single-crystal nickel-base superal-loys[J]. Journal of Alloys and Compounds,2016,688:133-142.
[42]LIANG Y J,CHENG X,LI J,et al. Microstructural con-trol during laser additive manufacturing of single-crystal nickel-base superalloys: new processing–microstructure maps involving powder feeding[J]. Materials &Design,2017,130:197-207.
[43]梁静静(jing),杨彦(yan)红(hong),周亦(yi)胄(zhou),等(deng). 激光立(li)体(ti)成形(xing)镍(nie)基单(dan)晶(jing)高温(wen)合(he)金(jin)显微组织研究 [J]. 稀有金属材料与(yu)工程(cheng),2017,46(12):3753-3759.
LIANG J J,YANG Y H,ZHOU Y Z,et al. Microstruc-tures of nickel-based single-crystal superalloy prepared by laser solid forming[J]. Rare Metal Materials and Engineering,2017,46(12):3753-3759.
[44]CI S,LIANG J,LI J,et al. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming[J]. Materials Science and Technology,2020,45:23-34.
[45]ROTTWINKEL B,NÖLKE C,KAIERLE S,et al. Laser cladding for crack repair of CMSX-4 single-crystalline turbine parts[J]. Lasers in Manufacturing and Materials Processing,2017,4(1):13-23.
[46]WANG C, LI Q, ZHOU X, et al. Contrastive studies between laser repairing and plasma arc repairing on sin-gle-crystal Ni-based superalloy[J]. Materials, 2019,12(7):1172.
[47]ZHANG D,LIU W,LI Y,et al. In situ observation of crystal rotation in Ni-based superalloy during additive manufacturing process[J]. Nature Communications,2023,14(1):2961.
[48]SAMES W J,UNOCIC K A,DEHOFF R R,et al. Ther-mal effects on microstructural heterogeneity of Inconel 718 materials fabricated by electron beam melting[J].Journal of Materials Research, 2014, 29(17) : 1920-1930.
[49]ARRIZUBIETA J I,LAMIKIZ A,CORTINA M,et al.Hardness, grain size and porosity formation prediction on the laser metal deposition of AISI 304 stainless steel[J]. International Journal of Machine Tools and Manufacture,2018,135:53-64.
[50]高祥(xiang)熙,杨平华(hua),乔(qiao)海燕,等(deng). 基于 μCT 表(biao)征的 SLM成(cheng) 形 GH3536 高 温(wen) 合(he) 金 缺(que) 陷(xian) 特(te) 征(zheng) [J]. 材(cai) 料 工(gong) 程 ,2022,50(10):63-72.
GAO X X,YANG P H,QIAO H Y,et al. Defect charac-teristics within SLM-fabricated GH3536 superalloy dependence on μCT characterization[J]. Journal of Materials Engineering,2022,50(10):63-72.
[51]HAN Q, MERTENS R, MONTERO-SISTIAGA M L,et al. Laser powder bed fusion of Hastelloy X:effects of hot isostatic pressing and the hot cracking mechanism[J]. Materials Science and Engineering: A,2018,732:228-239.
[52]GUO B,ZHANG Y,YANG Z,et al. Cracking mecha-nism of Hastelloy X superalloy during directed energy deposition additive manufacturing[J]. Additive Manu-facturing,2022,55:102792.
[53]FU J,LI H,SONG X,et al. Multi-scale defects in pow-der-based additively manufactured metals and alloys[J].Journal of Materials Science & Technology,2022,122:165-199.
[54]ZHOU Z, LEI Q, YAN Z, et al. Effects of process parameters on microstructure and cracking susceptibil-ity of a single crystal superalloy fabricated by directed energy deposition[J]. Materials & Design, 2020, 198:109296.
[56]RONG P,WANG N,WANG L,et al. The influence of grain boundary angle on the hot cracking of single crystal superalloy DD6[J]. Journal of Alloys & Compounds,2016,676:181-186.
[57]LU N,LEI Z,HU K,et al. Hot cracking behavior and mechanism of a third-generation Ni-based single-crystal superalloy during directed energy deposition[J]. Addi-tive Manufacturing,2020,34:101228.
[58]CHANDRA S,TAN X,NARAYAN R L,et al. A gen-eralised hot cracking criterion for nickel-based superal-loys additively manufactured by electron beam melting[J]. Additive Manufacturing,2021,37:101633.
[59]於(yu)之(zhi)杰,徐(xu)碧涵(han),王(wang)向盈(ying) 等(deng). 航空增(zeng)材制造(zao)技(ji)术中(zhong)的(de)跨尺(chi)度(du)力学研究进展(zhan) [J]. 航(hang)空材料学(xue)报(bao),2023,5(43):1-9.
YU Z J,XU B H,WANG X Y,et al. Progress of cross-scale mechanics in additive manufacturing technology for aeronautical application[J]. Journal of Aeronautical Materials,2023,5(43):1-9.
[60]万(wan)宏远(yuan),刘(liu)壮壮(zhuang),韩泉(quan)泉,等. 激(ji)光增材(cai)制造高(gao)温合金(jin)抗(kang) 开(kai) 裂 行(xing) 为 研(yan) 究 进(jin) 展(zhan) [J]. 航 空(kong) 科(ke) 学 技(ji) 术(shu) , 2022,33(9):26-42.
WAN H Y,LIU Z Z,HAN Q Q,et al. Laser additive manufacturing of cracking-resistant superalloys[J].Aeronautical Science & Technology,2022,33(9):26-42.
[61]CLOOTS M, UGGOWITZER P J, WEGENER K.Investigations on the microstructure and crack forma-tion of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles[J]. Mate-rials & Design,2016,89:770-784.
[62]WU Y,SUN B B,CHEN B Q,et al. Cracking mecha-nism of GH5188 alloy during laser powder bed fusion additive manufacturing[J]. Materials Characterization,2024,207:113548.
[63]SANCHEZ S, SMITH P, XU Z, et al. Powder bed fusion of nickel-based superalloys: a review, Interna-tional Journal of Machine Tools and Manufacture,2021,165:103729.
[64]KONTIS P,CHAUVET E,PENG Z,et al. Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys[J]. Acta Materi-alia,2019,177:209-221.
[65]ZHOU Z,HUANG L,SHANG Y,et al. Causes analy-sis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufac-turing[J]. Materials & Design,2018,160:1238-1249.
[66]XU J, DING Y, GAO Y, et al. Grain refinement and crack inhibition of hard-to-weld Inconel 738 alloy by altering the scanning strategy during selective laser melt-ing[J]. Materials & Design,2021,209:109940.
[67]TOMUS D,ROMETSCH P A,HEILMAIER M,et al.Effect of minor alloying elements on crack-formation characteristics of Hastelloy-X manufactured by selec- tive laser melting[J]. Additive Manufacturing, 2017,16:65-72.
[68]HARRISON N J,TODD I,MUMTAZ K. Reduction of micro-cracking in nickel superalloys processed by selec-tive laser melting: a fundamental alloy design approach[J]. Acta Materialia,2015,94:59-68.
[69]TANG Y T,PANWISAWAS C,GHOUSSOUB J N,et al. Alloys-by-design:application to new superalloys for additive manufacturing[J]. Acta Materialia,2021,202:417-436.
[70]HAN Q,GU Y,SETCHI R,et al. Additive manufactur-ing of high-strength crack-free Ni-based Hastelloy X superalloy[J]. Additive Manufacturing, 2019, 30:100919.
[71]CHENG X,ZHAO Y,QIAN Z,et al. Crack elimination and mechanical properties enhancement in additive man-ufactured Hastelloy X via in-situ chemical doping of Y2O3[J]. Materials Science and Engineering:A,2021,824:141867.
[72]POPOVICH V A,BORISOV E V,POPOVICH A A,et al. Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting[J]. Materials & Design, 2017,131:12-22.
[73]WANG F. Mechanical property study on rapid additive layer manufacture Hastelloy® X alloy by selective laser melting technology[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58(5) :545-551.
[74]WANG P,ZHANG B,TAN C C,et al. Microstructural characteristics and mechanical properties of carbon nan-otube reinforced Inconel 625 parts fabricated by selec-tive laser melting[J]. Materials and Design,2016,112:290-299.
[75]宋(song)衎,喻凯(kai),林鑫,等. 热(re)处(chu)理态(tai)激(ji)光(guang)立(li)体(ti)成形 Inconel718 高 温(wen) 合(he) 金(jin) 的(de) 组 织(zhi) 及 力 学(xue) 性(xing) 能(neng) [J]. 金(jin) 属(shu) 学 报(bao) ,2015,51(8):935-942.
SONG K, YU K, LIN X, et al. Microstructure and mechanical properties of heat treatment laser solid form-ing superalloy Inconel 718[J]. Acta Metallurgica Sinica,2015,51(8):935-942.
[76]STRÖSSNER J,TEROCK M,GLATZEL U. Mechani-cal and microstructural investigation of nickel-based superalloy IN718 manufactured by selective laser melt-ing (SLM)[J]. Advanced Engineering Materials,2015,17(8):1099-1105.
[77]SANCHEZ-MATA O, MUÑIZ-LERMA J A, WANG X, et al. Microstructure and mechanical properties at room and elevated temperature of crack-free Hastelloy Xfabricated by laser powder bed fusion[J]. Materials Sci-ence and Engineering:A,2020,780:139177.
[78]MONTERO-SISTIAGA M L,LIU Z,BAUTMANS L,et al. Effect of temperature on the microstructure and tensile properties of micro-crack free hastelloy X pro-duced by selective laser melting[J]. Additive Manufac-turing,2020,31:100995.
[79]NGUEJIO J, SZMYTKA F, HALLAIS S, et al. Com-parison of microstructure features and mechanical prop-erties for additive manufactured and wrought nickel alloys 625[J]. Materials Science and Engineering,2019,764:138214.
[80]张国栋,许乔(qiao)郅(zhi),郑(zheng)涛,等. 航(hang)空装备(bei)电(dian)子(zi)束增(zeng)材(cai)制造(zao)技术发(fa)展及路(lu)线(xian)图 [J]. 航(hang)空(kong)材料学(xue)报,2023,43(1):28-38.
ZHANG G D,XU Q Z,ZHENG T,et al. Technology development and roadmap of electron beam additive manufacturing for aviation equipments[J]. Journal of Aeronautical Materials,2023,43(1):28-38.
[81]刘(liu)凯. 热(re)等(deng)静(jing)压(ya)工(gong)艺对 SLM 成形(xing) GH3536 合金(jin)的(de)组织(zhi)及性能(neng)影(ying)响(xiang) [D]. 北京(jing):机械科(ke)学研究总(zong)院,2018.
LIU K. Impact of HIP on the structure and property of GH3536 alloy formed by SLM [D]. Beijing:Academy of Machinery Science & Technology,2018.
[82]BEAN G E, MCLOUTH T D, WITKIN D B, et al.Build orientation effects on texture and mechanical prop-erties of selective laser melting Inconel 718[J]. Journal of Materials Engineering and Performance, 2019, 28:1942-1949.
[83]NI M, CHEN C, WANG X, et al. Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing[J]. Materials Science and Engineering:A,2017,701:344-351.
[84]GALLMEYER T G,MOORTHY S,KAPPES B B,et al. Knowledge of process-structure-property relation-ships to engineer better heat treatments for laser powder bed fusion additive manufactured Inconel 718[J]. Addi-tive Manufacturing,2020,31:100977.
[85]TROSCH T, STROESSNER J, YOELKL R, et al.Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and cast-ing[J]. Materials Letters,2016,164:428-431.
[86]KIRKA M M,MEDINA F,DEHOFF R,et al. Mechani-cal behavior of post-processed Inconel 718 manufac-tured through the electron beam melting process[J].Materials Science and Engineering:A,2017,680:338-346.
[87]STRONDL A,PALM M,GNAUK J,et al. Microstruc-ture and mechanical properties of nickel based superal-loy IN718 produced by rapid prototyping with electron beam melting (EBM)[J]. Materials Science and Tech-nology,2011,27(5):876-883.
[88]XU X,GANGUL S,DING J,et al. Enhancing mechani-cal properties of wire+arc additively manufactured INCONEL 718 superalloy through in-process thermo-mechanical processing[J]. Materials & Design, 2018,160:1042-1051.
[89]ALONSO U,VEIGA F,SUáREZ A,et al. Characteriza-tion of Inconel 718® superalloy fabricated by wire arc additive manufacturing:effect on mechanical properties and machinability[J]. Journal of Materials Research and Technology,2021,14:2665-2676.
[90]BLACKWELL P L. The mechanical and microstruc-tural characteristics of laser-deposited IN718[J]. Jour-nal of Materials Processing Technology,2005,
170(1/2):240-246.
[91]ZHAO X,CHEN J,LIN X,et al. Study on microstruc-ture and mechanical properties of laser rapid forming Inconel 718[J]. Materials Science and Engineering:A,2008,478:119-124.
[92]GAO Y,ZHANG D,CAO M,et al. Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process[J]. Materials Science and Engineering:A,2019,767:138327.
[93]KUO Y L, KAKEHI K. Influence of powder surface contamination in the Ni-based superalloy alloy718 fabri-cated by selective laser melting and hot isostatic press-ing[J]. Metals,2017,7(9):367.
[94]ZHANG Y,YANG L,LU W,et al. Microstructure and elevated temperature mechanical properties of IN718 alloy fabricated by laser metal deposition[J]. Materials Science and Engineering:A,2020,771:138580.
[95]KREITCBERG A,BRAILOVSKI V,TURENNE S,et al. Influence of thermo- and HIP treatments on the microstructure and mechanical properties of IN625 alloy parts produced by selective laser melting:a comparative study[J]. Materials Science Forum, 2016, 879: 1008-1013.
[96]杨(yang)启(qi)云(yun),吴(wu)玉道,沙菲. 选区(qu)激光(guang)熔化(hua)成形 Inconel625合金的(de)显微组(zu)织(zhi)及力学性(xing)能(neng) [J]. 机械(xie)工程材(cai)料(liao),2016,40(6):83-87.
YANG Q Y, WU Y D, SHA F. Microstructure and mechanical properties of Inconel 625 alloy manufac-tured by selective laser melting[J]. Materials for Mechanical Engineering,2016,40(6):83-87.
[97]何(he)艳(yan)丽(li),廖焕文(wen),王禄秀(xiu). 商用(yong)航空发(fa)动(dong)机金属增材制造技(ji)术及(ji)装(zhuang)备应用 [J]. 航(hang)空(kong)制造(zao)技(ji)术(shu),2014,22:47-51.
HE Y L,LIAO H W,WANG L X,et al. Application of technology and equipment for metallic additive manu-facturing in commercial aeroengine[J]. Aeronautical Manufacturing Technology,2014,22:47-51.
[98]杨(yang)谦. 增(zeng)材(cai)制造在航(hang)空发动机(ji)燃(ran)烧室中(zhong)的应用 [J]. 航(hang)空(kong)动力,2018(4):26-29.
YANG Q. Additive manufacturing for combustors[J].Aerospace Power,2018(4):26-29.
[99]3DPRINTINGINDUSTRY. GE cuts costs by 35% in move from casting to 3D printing technology [EB/OL]2021. https://3dprintingindustry.com/news/ge-cuts-costs-by-35-in-move-from-casting-to-3d-printing-technology-189798/.
[100]GE. GE Aviation and GE Additive engineers have switched four existing parts from castings to metal 3D printing—and see potential for hundreds more [EB/OL]2021. https://www.ge.com/additive/blog/ge-aviation-and-ge-additive-engineers-have-switched-four-existing-parts-castings-metal-3d.
[101]ADDITIVEMANUFACTURING. 3D printed turbine blades for more efficient power generation: the cool parts show #35 [EB/OL] 2021. https://www.additive- manufacturing.media/articles/3d-printed-turbine-blades-for-more-efficient-power-generation-the-cool-parts-show-35.
[102]ADDITIVEMANUFACTURING. AM will change power generation, but needs to prove itself first [EB/OL]2022.https://www.additivemanufacturing. media/articles/am-will-change-power-generation-but-needs-to-prove-itself-first.
[103]杨胶溪,吴文(wen)亮(liang),王长亮(liang),等(deng). 激(ji)光(guang)选(xuan)区(qu)熔化技(ji)术(shu)在(zai)航(hang)空航(hang)天(tian)领(ling)域(yu)的发(fa)展(zhan)现状(zhuang)及(ji)典型应用 [J]. 航(hang)空材(cai)料(liao)学(xue)报,2021,41(2):1-15.
YANG J X,WU W L,WANG C L,et al. Development status and typical application of selective laser melting technology applications in aerospace field[J]. Journal of Aeronautical Materials,2021,41(2):1-15.
[104]吴宏(hong)超(chao),袁浩,魏(wei)佳明,等. 增材(cai)制(zhi)造在燃(ran)气轮机(ji)研发(fa)及(ji)生产中的应(ying)用 [J]. 航空动力(li),2022(2):26-28.
WU H C,YUAN H,WEI J M,et al. The application of additive manufacturing technology in gas turbine research,development and manufacture [J]. Aerospace Power,2020(2):26-28.
[105]3DPRINTINGINDUSTRY. Man diesel uses metal am for serial turbine production [EB/OL] 2017. https://www.3dprintingmedia.network/man-diesel-uses-metal-serial-turbine-production/.
收(shou)稿(gao)日期(qi):2023-12-01;修(xiu)订日(ri)期(qi):2024-01-01
基(ji)金(jin)项(xiang)目:国 家 科(ke) 技 重(zhong) 大(da) 专 项 项(xiang) 目 (J2019-Ⅶ-0003-0143,Y2019-Ⅶ-0011-0151,J2022-Ⅶ-0002);国(guo)家自(zi)然科(ke)学基(ji)金(51875541,52005465);基(ji)础加(jia)强计(ji)划(hua)技(ji)术领(ling)域(yu)基(ji)金(2021-JCJQ-JJ-1095);中国航(hang)发自主(zhu)创新专项资(zi)金(ZZCX-2021-013)
通(tong)讯(xun)作者:陈(chen)冰清(qing)(1984—),女(nv),博(bo)士(shi),研(yan)究员(yuan),研究方(fang)向(xiang)为(wei)增(zeng)材制(zhi)造(zao),联系地址(zhi):北京(jing)市海淀(dian)区(qu)温(wen)泉(quan)镇(zhen)环山(shan)村 8 号(100095),E-mail:hwtkjcbq1984@http://www.gzhwkf.com


kzjsbc.com
凯泽金属手机网