前言
钛(tai)合(he)金(jin)具有比(bi)强度高、低温性(xing)能好、生物兼容性优(you)异等特(te)点,广泛(fan)应用(yong)于(yu)航(hang)空、航天(tian)、生(sheng)物医(yi)学(xue)和汽车等(deng)领(ling)域。但同(tong)时钛合(he)金(jin)受硬(ying)度(du)低、耐磨性(xing)差、高(gao)温(wen)易(yi)氧(yang)化以(yi)及生物活性低等缺点限制(zhi),难(nan)以(yi)适应复(fu)杂的(de)服(fu)役(yi)条(tiao)件(jian)。目前(qian)急需解决(jue)的(de)问(wen)题(ti)是(shi)如(ru)何(he)提高钛(tai)合(he)金表(biao)面(mian)硬度、耐磨(mo)性(xing)、高(gao)温抗(kang)氧化(hua)性能(neng)以及生物(wu)活(huo)性,进(jin)而扩(kuo)大(da)其应用范围[1-9]。为了(le)充(chong)分(fen)发挥 钛合金的优(you)势(shi),解决(jue)其硬(ying)度(du)低、耐(nai)磨性差(cha)等问题(ti),国(guo)内(nei)外(wai)许(xu)多学(xue)者(zhe)开展(zhan)了钛合金(jin)表面改(gai)性(xing)技(ji)术(shu)方面的研(yan)究(jiu)工作(zuo),主要(yao)包括(kuo)激(ji)光(guang)熔(rong)覆(fu)、微(wei)弧氧化(hua)、热/冷喷(pen)涂(tu)、表(biao)面(mian)渗碳(tan)/氮(dan)等(deng),其中激光(guang)熔(rong)覆技(ji)术(shu)的(de)应(ying)用(yong)最为广泛[10-11]。本(ben)文综(zong)述(shu)了(le)现(xian)阶(jie)段钛合金表面激(ji)光熔(rong)覆、微弧(hu)氧(yang)化和冷(leng)喷涂(tu)陶瓷涂(tu)层的研究现状(zhuang),并(bing)对相关(guan)研究进行(xing)了(le)展望(wang)。

1、 激光熔覆(fu)技术(shu)
钛(tai)合(he)金(jin)激光熔(rong)覆(fu)表(biao)面(mian)改(gai)性(xing)技术经(jing)历了从(cong)激光(guang)表(biao)面淬火(huo)到激(ji)光表面(mian)重(zhong)熔再(zai)到激(ji)光表(biao)面合金(jin)化以及激(ji)光熔覆(fu)的(de)过程。激(ji)光熔(rong)覆(fu)技(ji)术(shu)具有许(xu)多(duo)优(you)点(dian)[12-14]:激光熔覆(fu)涂(tu)层与(yu)基(ji)材呈(cheng)冶(ye)金结(jie)合(he),其结(jie)合(he)力(li)较(jiao)强,而(er)且(qie)较高(gao)的(de)冷(leng)却速率使涂(tu)层(ceng)组(zu)织(zhi)细(xi)化(hua),结构致(zhi)密,进(jin)一步(bu)强(qiang)化(hua)了(le)涂(tu)层质量;可(ke)通(tong)过设计不(bu)同成(cheng)分的熔覆(fu)材(cai)料得(de)到不同性(xing)能(neng)的涂层(ceng);可(ke)在(zai)低熔点的金(jin)属(shu)表(biao)面熔覆高熔点(dian)的(de)合金;熔(rong)覆(fu)涂(tu)层的厚度(du)可控,并可(ke)进(jin)行选区(qu)熔覆等。
采(cai)用激光(guang)熔(rong)覆技(ji)术(shu)在(zai)钛合金表面(mian)制备(bei)功能(neng)性(xing)熔(rong)覆层(ceng),通常(chang)采用(yong)自(zi)熔性(xing)合(he)金(jin)粉末(mo),包(bao)括(kuo)Ni 基(ji)、Co基(ji)、Fe 基(ji)和(he)金(jin)属基陶(tao)瓷(ci)复合材(cai)料(liao)。激光熔(rong)覆通(tong)过(guo)引入(ru)或原(yuan)位(wei)自(zi)生增(zeng)强相(xiang)或(huo)自(zi)润滑相改(gai)善基(ji)体表(biao)面(mian)性(xing)能(neng),故相(xiang)的种(zhong)类(lei)、含(han)量(liang)和(he)分布(bu)等因素(su)决定了涂层(ceng)的性(xing)能(neng)。常用的(de)涂层增强相(xiang)为(wei)TiC、TiBx、TiN 和(he)WC等硬(ying)质(zhi)陶瓷(ci)相[15-16]。

在激(ji)光熔(rong)覆陶(tao)瓷(ci)粉末(mo)过(guo)程(cheng)中,陶(tao)瓷(ci)材料(liao)与钛合(he)金基材发生反(fan)应(ying)生成(cheng)新(xin)的陶瓷相来(lai)改善钛合金的(de)表面性(xing)能(neng)。覃(tan)鑫(xin)[17]等(deng)在(zai)钛(tai)合金表面(mian)激(ji)光熔覆(fu)NiCrCoAlY+20%Cr3C2粉(fen)末制(zhi)备耐摩擦磨(mo)损(sun)及(ji)高温(wen)抗(kang)氧(yang)化的复(fu)合(he)涂层。通过(guo)合理(li)的(de)工(gong)艺参数(shu)设(she)计(ji),获得(de)的熔(rong)覆(fu)区(qu)显(xian)微组(zu)织(zhi)结(jie)构(gou)致(zhi)密(mi)、成(cheng)形(xing)良好(hao)、无(wu)气(qi)孔和(he)裂纹(wen)等组织(zhi)缺(que)陷(xian),涂层内(nei)部(bu)组(zu)织(zhi)由(you)树(shu)枝(zhi)晶、针状(zhuang)晶(jing)以及树(shu)枝晶的共(gong)晶(jing)组织(zhi)组(zu)成(cheng)(见图1);复合(he)涂(tu)层的最高(gao)显微硬(ying)度为(wei)1 344 HV(见(jian)图2),约(yue)为(wei)钛(tai)合金(jin)基(ji)体(350 HV)的(de)3.8 倍(bei),850 ℃具(ju)有较好的(de)高温抗(kang)氧(yang)化性能(neng)(见图(tu)3)。

在(zai)激(ji)光(guang)熔(rong)覆过程中外加法(fa)的(de)陶(tao)瓷材(cai)料(liao)的涂层(ceng)与(yu)钛(tai)合金基(ji)体结合力(li)不(bu)高,容(rong)易(yi)开(kai)裂,产(chan)生(sheng)孔洞等(deng)问(wen)题[18-19]。其(qi)主要原因首先是陶瓷(ci)颗(ke)粒与(yu)基(ji)体钛合金(jin)的(de)热膨(peng)胀(zhang)系(xi)数(shu)等(deng)物(wu)理(li)性(xing)能相差较大,导致涂层(ceng)存(cun)在(zai)较大的残余(yu)应力(li);其(qi)次(ci)从材料(liao)的键(jian)合方式(shi)角(jiao)度分(fen)析(xi),钛合(he)金(jin)键合(he)方式(shi)为(wei)金属键(jian),而(er)陶瓷(ci)材料(liao)的结(jie)合方式(shi)为共价键或(huo)离(li)子(zi)键(jian),钛(tai)合(he)金(jin)和(he)陶瓷材(cai)料的晶(jing)体结构也不相(xiang)同,因(yin)此钛合(he)金(jin)与(yu)陶瓷材料之(zhi)间的(de)相(xiang)容(rong)性差。另外(wai)激光(guang)熔覆(fu)属于(yu)快(kuai)热和(he)快(kuai)冷的(de)过程,涂(tu)层内(nei)部会(hui)产(chan)生较大的拉应力,残余拉(la)应(ying)力超过(guo)涂(tu)层(ceng)材料(liao)的抗(kang)拉强度(du)时(shi)即(ji)开(kai)裂(lie)。

安(an)强[20]在(zai)TA15 钛合金(jin)表(biao)面激(ji)光(guang)熔(rong)覆原(yuan)位合成(cheng)TiC 增强钛基复(fu)合涂层。研(yan)究(jiu)发现,整个(ge)涂(tu)层组(zu)织由(you)平(ping)面(mian)晶(jing)、柱状(zhuang)晶(jing)、树(shu)枝(zhi)晶(jing)和等轴晶(jing)组(zu)成(cheng);由(you)XRD分(fen)析(xi)可知(zhi),涂层主(zhu)要由(you)β-Ti、Co3Ti、CrTi4和(he)原位(wei)自生的(de)TiC 物(wu)相(xiang)组成,涂层与(yu)基体(ti)形成了良好(hao)的(de)冶金(jin)结(jie)合(he);涂层(ceng)的显微(wei)硬(ying)度(du)最高值(zhi)为(wei)715 HV,约(yue)为(wei)TA15 基体(ti)显(xian)微硬(ying)度(du)的2.1 倍(见图(tu)4);涂层具有(you)较好(hao)的抗磨(mo)性(xing)能,磨损(sun)机(ji)制为磨粒(li)磨(mo)损(sun)。利(li)用(yong)原(yuan)位(wei)合成(cheng)陶瓷材(cai)料(liao)的方法(fa)即通(tong)过化(hua)学反(fan)应生(sheng)成(cheng)陶瓷涂层,增强(qiang)相与基(ji)体结(jie)合界面(mian)干(gan)净,结(jie)合力(li)较(jiao)大,不(bu)容易脱(tuo)落。但是化(hua)学(xue)反(fan)应(ying)过程无(wu)法控制(zhi),会(hui)有(you)有(you)害杂(za)质的(de)生(sheng)成(cheng)相[21]。所以(yi)原(yuan)位自生法制(zhi)备陶(tao)瓷涂(tu)层如何精确(que)调控反应过(guo)程(cheng),是未来研究的重点。
激(ji)光(guang)熔(rong)覆技(ji)术(shu)经(jing)历了从(cong)单层(ceng)熔(rong)覆(fu)层,到(dao)多层(ceng)熔覆(fu)层、复合(he)熔覆(fu)层以(yi)及梯(ti)度涂(tu)层(ceng)研究的发(fa)展过程,随着技(ji)术(shu)的(de)不(bu)断(duan)研(yan)究(jiu)改(gai)进(jin),出(chu)现了许多(duo)新型(xing)激(ji)光熔覆技(ji)术(shu)[22],例如(ru)环(huan)形(xing)激光(guang)熔(rong)覆(fu)技术。该(gai)技(ji)术是(shi)一(yi)项(xiang)利(li)用(yong)中(zhong)空(kong)环(huan)形(xing)的聚焦高能(neng)激光(guang)束(shu)和(he)光内输送的熔覆材(cai)料同轴耦合(he)作(zuo)用(yong)于(yu)基体(ti)表(biao)面的(de)典(dian)型材(cai)料沉积加工(gong)技术(shu),具(ju)有扫(sao)描方(fang)向(xiang)不(bu)受限(xian)、熔覆(fu)材料种类(lei)多(duo)、材(cai)料(liao)利用率(lv)高(gao)和(he)熔(rong)覆(fu)过(guo)程(cheng)可(ke)干(gan)预性强等(deng)优点,与传(chuan)统激光(guang)熔覆技术(shu)相比,其在(zai)激(ji)光(guang)能(neng)量(liang)利用率(lv)、熔(rong)覆(fu)材料沉积(ji)率、光料(liao)耦(ou)合(he)精度、熔(rong)覆(fu)过程稳(wen)定性及熔覆层结(jie)合质(zhi)量等(deng)方(fang)面均有(you)大(da)幅(fu)提(ti)升(sheng),在(zai)激光金属沉积领(ling)域(yu)有(you)着(zhe)巨大(da)的发展潜(qian)力,因(yin)此(ci)备受(shou)关注[23]。在钛(tai)合金(jin)表面(mian)利(li)用该方(fang)法(fa)制备(bei)熔(rong)覆(fu)层(ceng)目(mu)前(qian)未(wei)见(jian)报道(dao),学(xue)者(zhe)可以(yi)开(kai)展此(ci)方(fang)面(mian)的(de)研(yan)究工作(zuo)。
激(ji)光熔(rong)覆(fu)在钛合金(jin)表(biao)面(mian)熔(rong)覆(fu)材(cai)料发(fa)展潜(qian)力较大,但是目前没有工(gong)业(ye)化(hua)生(sheng)产(chan),未(wei)来(lai)的发(fa)展(zhan)主(zhu)要(yao)在(zai)以下(xia)方面[10-11]:开(kai)发宽(kuan)域(yu)的(de)新(xin)型(xing)陶瓷(ci)熔覆材(cai)料体(ti)系;涂层的(de)形(xing)成(cheng)过程(cheng)、形(xing)成(cheng)机制的(de)调控(kong);熔覆(fu)涂(tu)层(ceng)的(de)裂(lie)纹(wen)和(he)缺陷(xian)的(de)控制(zhi)。
2 、微(wei)弧(hu)氧(yang)化(hua)技术
微弧氧化(hua)技术(shu)是(shi)在阳(yang)极氧化(hua)基(ji)础上(shang)发(fa)展(zhan)起来(lai)的(de)表(biao)面(mian)改性(xing)技(ji)术(shu)。钛合金(jin)微弧(hu)氧化(hua)(MAO)[24]是(shi)一种在(zai)钛(tai)及(ji)钛合(he)金(jin)表(biao)面原位生(sheng)长成(cheng)氧化物(wu)陶瓷膜(mo),这(zhe)种(zhong)陶瓷(ci)膜与基(ji)体(ti)结合(he)强(qiang)度高(gao),可(ke)以提(ti)升钛(tai)合金的抗磨损、耐腐蚀和绝(jue)缘性(xing)[25]。钛(tai)及(ji)钛(tai)合(he)金(jin)微弧氧(yang)化(hua)是(shi)将Ti、Mg、Al 等(deng)金(jin)属置(zhi)于(yu)电解(jie)液中(zhong),在电(dian)源作用下基体(ti)表(biao)面产生(sheng)放电出(chu)现(xian)高(gao)温(wen)、高压(ya);在高(gao)温(wen)高(gao)压(ya)作用(yong)下(xia)基(ji)体(ti)表面熔化与游(you)离离子相互作用(yong),然后进(jin)行氧(yang)化、融(rong)合,最后在金属表(biao)面沉(chen)积成(cheng)膜[26-30]。
李玉海(hai)[31]等通(tong)过微弧氧(yang)化方法分(fen)别(bie)向(xiang)电(dian)解液中(zhong)添加陶(tao)瓷(ci)颗(ke)粒(li)SiC 和(he)SiO2在TC4钛合金(jin)表(biao)面(mian)制备复(fu)合陶(tao)瓷膜。氧化(hua)膜表(biao)面(mian)孔洞(dong)微小(xiao),膜层(ceng)致密(mi)性较(jiao)高,陶瓷膜(mo)组(zu)织(zhi)主要有(you)α-SiC 和(he)β-SiC 相(xiang),SiO2颗(ke)粒(li)的(de)添(tian)加(jia)使(shi)得(de)膜层摩(mo)擦(ca)系数波动(dong)平稳(wen)且波动范围(wei)仅(jin)在(zai)0.15~0.2。相同实验条件下添加SiC 颗(ke)粒(li)的(de)陶瓷(ci)膜耐(nai)磨性(xing)比未(wei)添(tian)加陶瓷(ci)颗(ke)粒(li)的耐磨性(xing)提高75%,而含(han)有SiO2颗(ke)粒(li)的膜层相(xiang)对基(ji)体(ti)提(ti)高(gao)130%。在摩擦(ca)磨(mo)损实验过程中(zhong),添(tian)加SiC 颗粒的陶瓷膜表面(mian)仅有轻(qing)微(wei)犁沟(gou)痕迹,含(han)有(you)SiO2的膜(mo)层(ceng)表(biao)面磨(mo)损最(zui)轻(qing)微,只出(chu)现粘着磨(mo)损的痕(hen)迹,膜层(ceng)耐(nai)磨(mo)性(xing)能均(jun)得(de)到提升。
解念锁[32]等(deng)在(zai)Na2SiO3、Na3PO4电(dian)解液中(zhong)对TC4表(biao)面(mian)进(jin)行微弧(hu)氧(yang)化(hua)制备抗(kang)氧化膜(mo)层。微弧氧(yang)化(hua)膜层的(de)SEM 形貌细小、均(jun)匀、多孔(kong),主(zhu)要(yao)由(you)Al2SiO5和(he)Al2TiO5组成,在750 ℃循(xun)环氧化(hua)100 h 后(hou),经(jing)300 V电(dian)压微(wei)弧(hu)氧化(hua)60 min 的TC4 钛合(he)金(jin)的氧(yang)化(hua)增(zeng)重(zhong)为7.8 mg/cm2,而(er)未经(jing)微(wei)弧氧(yang)化(hua)处(chu)理的TC4 钛合(he)金(jin)氧化增(zeng)重(zhong)为(wei)30.51 mg/cm2。并(bing)且随着微(wei)弧氧化时间的增加和(he)电(dian)压(ya)的(de)增大,微弧氧化TC4钛(tai)合(he)金(jin)的高温抗(kang)氧(yang)化(hua)性能也(ye)有所增强(qiang)。
杨(yang)泽慧[33]等(deng)人(ren)在TC4 合金(jin)表(biao)面微弧(hu)氧化(hua)原(yuan)位(wei)自生自(zi)润滑(hua)MoS2/TiO2膜(mo)层(见(jian)图5),讨(tao)论了(le)原(yuan)位反应中(zhong)Na2S 添(tian)加量对(dui)膜(mo)层微(wei)观(guan)结(jie)构及耐(nai)磨(mo)性能(neng)的影(ying)响(xiang)。通过控制Na2S 浓度(du)可(ke)实现原位生成(cheng)小(xiao)尺寸(cun)MoS2颗(ke)粒(li),且(qie)其(qi)含(han)量和形态(tai)可控(kong),原位(wei)自(zi)生MoS2膜层的(de)耐磨(mo)性较传统微(wei)弧氧(yang)化(hua)膜层或(huo)直接添(tian)加MoS2颗(ke)粒(li)所(suo)得(de)膜(mo)层(ceng)分(fen)别提(ti)高(gao)了(le)395.4%、129.4%;膜基结
合(he)力(li)较(jiao)传(chuan)统(tong)微(wei)弧氧(yang)化提高了(le)约87%,达(da)到(dao)723.8 N,说明原(yuan)位自(zi)生(sheng)微(wei)弧氧化在(zai)保(bao)证(zheng)良(liang)好(hao)的(de)自(zi)润(run)滑效果(guo)的同时(shi)改(gai)善(shan)了膜基(ji)结(jie)合(he)力(li)。

微弧氧(yang)化技术(shu)的研究已(yi)经历了几十年的发(fa)展(zhan)历(li)程,从(cong)交流(liu)微弧氧化(hua)技术到(dao)现在较为(wei)热门的(de)激(ji)光复(fu)合(he)微弧氧(yang)化(hua)技术(shu)[34]。Wang 等[35]将(jiang)TC4钛(tai)合金进行激(ji)光表(biao)面(mian)重(zhong)熔(rong)、微弧氧化(hua)处(chu)理(li),得(de)到(dao)多孔(kong)生(sheng)物陶瓷涂层。通过(guo)激光(guang)表面重熔(rong)预(yu)处(chu)理降(jiang)低基材的(de)表(biao)面粗(cu)糙度(du),提(ti)高(gao)微(wei)弧氧化(hua)涂层(ceng)的(de)均匀(yun)性(xing)和密度,同时(shi)减少厚度,与(yu)未(wei)处(chu)理的(de)样(yang)品(pin)相比(bi)具(ju)有(you)最佳(jia)的(de)耐(nai)腐(fu)蚀性,表面(mian)粗(cu)糙度(du)最(zui)低(di),孔隙(xi)率(lv)较(jiao)低(di)。
钛合金微(wei)弧(hu)氧(yang)化(hua)也存(cun)在急(ji)需(xu)解决(jue)的(de)技(ji)术问题:
(1)单位面(mian)积耗能较(jiao)大(da);(2)氧化(hua)膜(mo)的(de)膜基(ji)结合(he)问(wen)题(ti);(3)膜(mo)层(ceng)多孔(kong)问题(ti),影响基材的(de)耐(nai)蚀(shi)性。
3 、喷涂
喷(pen)涂技(ji)术(shu)是在(zai)不改变基体其他性(xing)能的条(tiao)件下,通过(guo)某(mou)种热源(yuan)或者(zhe)动力(li)源(yuan)将(jiang)材(cai)料形成高(gao)速(su)粒子流(liu),喷(pen)向(xiang)基(ji)体(ti)上(shang)不断沉积(ji)形(xing)成(cheng)具有(you)一定功能(neng)的(de)涂层[36],其特(te)点(dian)是(shi)工艺(yi)简便(bian)、应用(yong)范围较广[37-39]。近年来,研究(jiu)人员(yuan)在传(chuan)统(tong)喷涂(tu)技术(shu)基础上(shang)发(fa)展(zhan)出(chu)超音(yin)速(su)火(huo)焰喷涂、超(chao)音速等离子(zi)喷(pen)涂、反应(ying)热(re)喷涂(tu)和冷喷(pen)涂等(deng)工艺[40-42]。
钛(tai)合(he)金的(de)氧活性(xing)很(hen)高(gao),传统的(de)热喷(pen)涂(tu)技术(shu)不(bu)适合制(zhi)备(bei)钛及钛(tai)合金涂(tu)层;冷喷(pen)涂作为(wei)新兴(xing)的喷涂(tu)技术由(you)于(yu)制(zhi)备温(wen)度低(di)、涂层(ceng)沉积率较高(gao)、孔隙率低(di)和结合强(qiang)度较(jiao)高等(deng)特(te)点,在钛合金(jin)表(biao)面制备(bei)涂层(ceng)具有(you)独特(te)优(you)势[43-50]。因(yin)为(wei)冷(leng)喷(pen)涂(tu)主要是高(gao)速飞行的(de)粒子在撞(zhuang)击(ji)基体时(shi)发生(sheng)严(yan)重(zhong)的塑性(xing)变形,从(cong)而实(shi)现(xian)涂层沉(chen)积,对于(yu)金(jin)属材料(liao)来讲,面(mian)心立方金(jin)属(shu)的Al、Cu等 滑移(yi)系(xi)较(jiao)多(duo),较(jiao)易(yi)发生(sheng)塑性(xing)变(bian)形(xing),而对(dui)于(yu)密排六方金(jin)属的Ti、Co等,滑移系(xi)统(tong)较(jiao)少、塑(su)性(xing)较差(cha)[51]。李(li)文亚(ya)等(deng)[52]以(yi)空气为(wei)喷涂(tu)气(qi)体(ti),在气体(ti)温度(du)520 ℃、压力(li)2.8 MPa的(de)条(tiao)件下(xia),制备(bei)了纯(chun)钛(tai)和(he)钛合(he)金(jin)涂层,发现(xian)两种涂层(ceng)的(de)孔隙率(lv)分(fen)别高达(da)5.1% 和(he)22.4%,而孔隙往往(wang)存在(zai)于(yu)有(you)限(xian)变形的(de)粒子之(zhi)间(jian),所(suo)以影(ying)响了涂层性(xing)能。
近(jin)年(nian)来(lai),国(guo)内外(wai)学者从喷(pen)涂(tu)参(can)数(shu)、粉(fen)末状态、喷嘴及(ji)基(ji)体(ti)等不(bu)同方面(mian)对冷喷(pen)涂钛及钛(tai)合(he)金涂(tu)层(ceng)进(jin)行了(le)组织调控。李(li)海升(sheng)[53]等(deng)在TC4 钛(tai)合(he)金(jin)表(biao)面冷(leng)喷涂制(zhi)备(bei)CuNiIn 涂层(ceng),研究(jiu)其组(zu)织结(jie)构(gou)和(he)微动磨(mo)损(sun)性能(neng),涂(tu)层(ceng)的(de)孔(kong)隙率仅为2.8%,最(zui)高(gao)硬(ying)度可达(da)到300 HV,磨(mo)损(sun)机理(li)为(wei)粘着(zhe)磨损(sun)和磨粒(li)磨(mo)损。李(li)长久等[54]分(fen)别采用(yong)N2和(he)He两(liang)种气(qi)体作(zuo)为(wei)喷(pen)涂气体制备 了(le)Ti 涂(tu)层(ceng),结果(guo)表明(ming),用(yong)惰性(xing)气(qi)体(ti)He制(zhi)备(bei)的涂(tu)层(ceng)其(qi)组(zu)织更加(jia)致(zhi)密(mi),主要(yao)原因(yin)是(shi)在(zai)He条(tiao)件下粒子能获得(de)更大的(de)速(su)度,从(cong)而(er)发(fa)生更(geng)充分的(de)变(bian)形(xing)。Pelletier J L等[55]研究发现喂料速度(du)和(he)粉末(mo)流(liu)动(dong)速度(du)越(yue)高,涂层孔隙率越高(gao),厚(hou)度(du)越(yue)厚(hou),其原(yuan)因(yin)可能(neng)是低(di)的(de)喂(wei)料速度能(neng)够(gou)减(jian)小后面粒(li)子(zi)与(yu)先(xian)沉(chen)积(ji)涂(tu)层的(de)撞(zhuang)击(ji)角度,而(er)粉末(mo)流(liu)动(dong)速(su)度(du)会对喷(pen)嘴中的(de)气流(liu)产(chan)生影响(xiang)。ZahiriS H等(deng)[56]研(yan)究(jiu)了(le)喷涂(tu)距(ju)离对Ti 涂层(ceng)质量的(de)影响,发现喷涂距离(li)主(zhu)要影响(xiang)粒子速度,喷涂距(ju)离(li)增大(da),粒子速(su)度减小,导(dao)致塑性(xing)变(bian)形小,随(sui)着(zhe)喷涂距离的增大,涂层(ceng)孔隙率上(shang)升。殷硕(shuo)等[57]研究了喷涂(tu)角(jiao)度对(dui)冷(leng)喷涂(tu)Ti 粒(li)子(zi)沉(chen)积行(xing)为的影响,认为(wei)喷射角度为非垂(chui)直(zhi)角度(du)时,粒(li)子(zi)与(yu)基体(ti)的(de)结(jie)合会(hui)减(jian)弱(ruo)(见图(tu)6)。

综(zong)合来(lai)看,对于(yu)钛与钛合(he)金(jin)涂(tu)层(ceng)而言,尽(jin)可(ke)能(neng)采用高的气(qi)体(ti)温度(du)和压力(li)可以(yi)有效(xiao)提(ti)高粒(li)子(zi)速度(du),进(jin)而制(zhi)备出高(gao)质(zhi)量涂层(ceng)。除(chu)了(le)粉(fen)末材质(zhi)外,冷(leng)喷(pen)涂(tu)的粉(fen)末(mo)形(xing)状对(dui)喷(pen)涂(tu)质(zhi)量也(ye)有影(ying)响。Wong W[58]等采(cai)用不(bu)规则(ze)形(xing)和球(qiu)形两种(zhong)不同形状的Ti 粉制备冷喷涂涂(tu)层,研究(jiu)结果表(biao)明,粒(li)子的粉(fen)末不(bu)规则,制(zhi)备的涂(tu)层(ceng)致密性较好,主要是不(bu)规(gui)则粒(li)子的(de)拖(tuo)曳常(chang)数较高,在喷嘴(zui)出口(kou)处(chu)可获得更高的粒(li)子(zi)速度,所(suo)以与基(ji)体的(de)结合力(li)较好,而(er)不(bu)规则(ze)粉末的流(liu)动(dong)性不(bu)如(ru)球(qiu)形粉(fen),喷涂(tu)过程中容(rong)易(yi)氧化(hua)[59-61]。Cinca N[62]等(deng)研究认(ren)为当(dang)粒(li)子分布较窄时,涂层(ceng)的(de)孔(kong)隙(xi)、厚度(du)和(he)硬(ying)度(du)更(geng)为均匀。
除粉末(mo)材料(liao)和形态外,喷嘴(zui)结构对冷(leng)喷涂涂(tu)层(ceng)质量也有(you)明(ming)显影(ying)响,图7 为喷嘴(zui)优化前后(hou)制(zhi)备的(de)Ti涂层,可(ke)以看出改善(shan)后(hou)涂(tu)层(ceng)组(zu)织(zhi)明(ming)显致密(mi)[63]。李文亚(ya)[64]等通(tong)过改(gai)善(shan)喷嘴内部形状(zhuang)实(shi)现了(le)在低(di)压下高(gao)的粒子(zi)温(wen)度。MACDONALD D[65]改(gai)变(bian)喷(pen)嘴材(cai)质,发(fa)现高热导率(lv)的(de)喷嘴(zui)可(ke)以(yi)降低粒子的(de)临(lin)界速(su)度(du),从而(er)实现(xian)更(geng)高的(de)沉(chen)积(ji)效(xiao)率。

冷喷涂中(zhong)涂层与(yu)基体以(yi)及涂层内(nei)部的(de)机(ji)理(li)主(zhu)要是(shi)机械咬(yao)合(he)和(he)冶(ye)金结合,冶金结(jie)合的程度越高(gao),结合强(qiang)度越好,通过(guo)喷(pen)涂后热处(chu)理(li)可以(yi)进一步(bu)提(ti)高(gao)其冶(ye)金(jin)结(jie)合程(cheng)度(du)。李文亚等[66]在(zai)850 ℃真空(kong)气氛(fen)下将(jiang)Ti 和Ti6A14V 涂(tu)层(ceng)进行退火4 h,发(fa)现(xian)退火过程中(zhong)粒子之(zhi)间的(de)接(jie)触界(jie)面通过原子(zi)扩散(san)和(he)晶(jing)界迁(qian)移(yi)发生(sheng)了(le)冶(ye)金结合,但涂层(ceng)的孔隙(xi)率统计(ji)结果(guo)表(biao)明(ming),热处理(li)后两(liang)种涂层(ceng)的(de)孔(kong)隙率(lv)均(jun)有所增(zeng)加(jia)。
周(zhou)红霞[51]研(yan)究了Ti6A14V 涂层(ceng)在后续(xu)热(re)处(chu)理过程(cheng)中(zhong)孔隙的(de)演变规律(lv),结果(guo)表明(ming),在局部热处理(li)温度(du)下(xia)涂层(ceng)的孔(kong)隙(xi)率(lv)有所(suo)增加(jia),原因是(shi)喷涂层热处(chu)理(li)过程中残(can)余(yu)应(ying)力(li)得以释放,部分弱结合和(he)未(wei)结合(he)的粒子(zi)界面相(xiang)互脱(tuo)离引(yin)起的。
目前(qian),喷(pen)涂(tu)对(dui)钛(tai)合金(jin)涂层(ceng)研究相对较少(shao),多数(shu)为喷(pen)涂(tu)Ti 涂(tu)层。对(dui)喷(pen)涂(tu)工(gong)艺研究较多,对(dui)涂层形成(cheng)过程、粒(li)子(zi)内(nei)部(bu)显(xian)微结构研究较(jiao)少(shao)。由于(yu)喷涂涂层与基体(ti)的结(jie)合力较(jiao)弱,所(suo)以(yi)应用(yong)受到(dao)限(xian)制,喷(pen)涂后的热处理是(shi)提高(gao)其结(jie)合力(li)的(de)有(you)效(xiao)途(tu)径。对(dui)于冷(leng)喷涂技(ji)术(shu)与其(qi)他技术如(ru)激光(guang)熔(rong)覆(fu)、搅(jiao)拌(ban)摩擦焊等(deng)的融合(he)是(shi)未来(lai)的研(yan)究(jiu)趋(qu)势(shi)。
4、 结(jie)论(lun)及(ji)展(zhan)望(wang)
(1)激光表(biao)面(mian)改(gai)进(jin)技术在钛(tai)合(he)金(jin)表面(mian)可以通(tong)过(guo)有(you)限(xian)元(yuan)软(ruan)件(jian)和(he)数学建模模拟(ni)熔覆过(guo)程,或者(zhe)结(jie)合超声波辅助激光熔覆等(deng)方(fang)式,研(yan)发宽域的(de)新(xin)型(xing)陶(tao)瓷熔覆(fu)材料(liao)体系、功(gong)能梯(ti)度(du)涂层(ceng)等以(yi)减少裂纹(wen)等缺(que)陷。
(2)对(dui)于(yu)钛合金微弧(hu)氧(yang)化技术(shu),能源消(xiao)耗(hao)巨大、膜(mo)层易脱(tuo)落(luo)和(he)膜层(ceng)多(duo)孔(kong)现(xian)象是急(ji)需解决的问(wen)题(ti),需要通过进一步研(yan)究以(yi)提(ti)高(gao)钛合金微弧氧化(hua)膜(mo)层(ceng)的(de)性(xing)能。
(3)冷喷(pen)涂技(ji)术(shu)与(yu)其他(ta)技(ji)术(shu)如激(ji)光熔(rong)覆(fu)、搅(jiao)拌(ban)摩擦(ca)焊(han)等(deng)的融(rong)合是(shi)未来(lai)的(de)研究方(fang)向(xiang)。在(zai)先进科(ke)学技(ji)术(shu)的高速(su)发展(zhan)背景(jing)下,钛及钛合(he)金(jin)应(ying)用领(ling)域(yu)日益扩(kuo)展(zhan),对钛合(he)金(jin)表(biao)面(mian)性能(neng)的(de)要求越(yue)来(lai)越高,随(sui)着(zhe)这(zhe)些(xie)使用条件的变化钛合金表面改(gai)性(xing)技(ji)术(shu)也必(bi)将日(ri)臻完(wan)善。
参考(kao)文(wen)献(xian):
[1] 王欣,罗(luo)学(xue)昆,宇波,等(deng). 航空(kong)航天(tian)用(yong)钛合(he)金表(biao)面(mian)工程技(ji)术(shu)研究进(jin)展[J]. 航(hang)空(kong)制(zhi)造(zao)技术(shu),2022,65(04):14-24.
Wang Xin,Luo Xuekun,Yu Bo,et al. Research Progresson Surface Engineering Technology of AerospaceTitanium Alloys[J]. Aeronautical manufacturing technology,2022,65(04):14-24.
[2] 李兴宇,李芳(fang),牟刚(gang),等(deng). 钛(tai)及(ji)钛合金(jin)的(de)焊(han)接[J]. 电焊(han)机,2017,47(04):67-70,107.
LI Xingyu,LI Fang,MOU Gang,et al. Welding of titaniumand titanium alloys[J]. Electric Welding Machine,2017,47(04):67-70,107.
[3] 李芳婷,王恺(kai)婷,李(li)春(chun)波(bo),等(deng). 钛及(ji)钛合(he)金表(biao)面增(zeng)强(qiang)技(ji)术(shu)的(de)研(yan)究(jiu)进(jin)展(zhan)[J]. 世(shi)界有色(se)金(jin)属,2021(16):109-110.
Li Fangting,Wang Kaiting,Li Chunbo,et al. ResearchProgress of Surface Strengthening Technologyof Titanium and Titanium Alloys[J]. World Nonferrous Metals,2021(16):109-110.
[4] 陈钢(gang). 钛(tai)及钛合(he)金(jin)新(xin)工(gong)艺(yi)、新(xin)技术(shu)、新(xin)用(yong)途(tu)介绍(shao)[J]. 中国金(jin)属通(tong)报(bao),2018(01):160-161.
Chen Gang. Introduction of New Processes,New Technologiesand New Uses of Titanium and Titanium Alloys[J]. China Metals Bulletin,2018(01):160-161.
[5] 高(gao)飞(fei). 钛及(ji)钛合(he)金材(cai)料的(de)焊(han)接技(ji)术(shu)[J]. 石(shi)油(you)化(hua)工(gong)建(jian)设(she),2006(04):38-42.
Gao Fei. Welding Technology for Titanium and TitaniumAlloy Materials[J]. Petroleum and Chemical Construction,2006(04):38-42.
[6] 姜海(hai)涛,邵忠财,魏(wei)守强. 钛(tai)合金表(biao)面(mian)处理(li)技术的研究(jiu)进(jin)展(zhan)[J]. 电(dian)镀与(yu)精饰,2010,32(10):15-20.
Jiang Haitao,Shao Zhongcai,Wei Shouqiang. ResearchProgress of Surface Treatment Techniques for TitaniumAlloys[J]. Plating and Finishing,2010,32(10):15-20.
[7] 王迪,林松盛,刘(liu)灵(ling)云,等. 表(biao)面处(chu)理技(ji)术(shu)对钛(tai)合金(jin)疲劳性(xing)能(neng)影(ying)响的研究(jiu)进展[J]. 真空(kong),2019,56(06):36-42.
Wang Di,Lin Songsheng,Liu Lingyun,et al. ResearchProgress of Surface Treatment Technology onFatigue Properties of Titanium Alloy[J].Vacuum,2019, 56(06):36-42.
[8] 郭(guo)小(xiao)汝(ru),陈(chen)百(bai)明(ming),贾金龙,等(deng). 处(chu)理方法对(dui)钛合(he)金(jin)摩(mo)擦(ca)磨(mo)损(sun)性能(neng)影响(xiang)的(de)研究进(jin)展(zhan)[J]. 粉(fen)末冶(ye)金工(gong)业(ye),2021,31(02):97-103.
Guo Xiaoru,Chen Baiming,Jia Jinlong,et al. ResearchProgress on Friction and Wear Properties of TitaniumAlloys by Treatment Methods[J]. Powder MetallurgyIndustry,2021,31(02):97-103.
[9] Alexander Donchev,Michael Schütze,Andreas Kolitsch.Economic Surface Treatment of Ti-Alloys to Improvetheir Resistance against Environmental High TemperatureAttack[J]. Key Engineering Materials,2013,2362:551.
[10] 林(lin)基(ji)辉,温亚辉,范(fan)文(wen)博(bo),等. 钛合(he)金(jin)表面(mian)激(ji)光(guang)改(gai)性(xing)技术研(yan)究进展[J]. 金属热处理(li),2022,47(3):215-221.
Lin Jihui,Wen Yahui,Fan Wenbo,et al. ResearchProgress of Laser Modification Technology for TitaniumAlloy Surface[J]. Heat Treatment of Metals,2022,47(3):215-221.
[11] 路世(shi)盛,周健松(song),王(wang)凌(ling)倩(qian),等(deng). 钛合(he)金表(biao)面激光(guang)熔(rong)覆陶(tao)瓷(ci)涂(tu)层的研究(jiu)进展(zhan)[J]. 表面技术(shu),2019,48(11):82-91.
Lu Shisheng,Zhou Jiansong,Wang Lingqian,et al.Development of Laser Cladding Ceramic Coatings onTitanium Alloy Surface[J]. Surface Technology,2019, 48(11):82-91.
[12] 武(wu)万(wan)良,李(li)学(xue)伟. 钛(tai)合金(jin)激(ji)光(guang)熔(rong)覆技术研(yan)究(jiu)进(jin)展[J].稀(xi)有金(jin)属(shu)材(cai)料(liao)与工程,2006(06):850-854.
Wu Wanliang,Li Xuewei. Research Progresses on LaserCladding of Titanium Alloys[J]. Rare Metal Materialsand Engineering,2006(06):850-854.
[13] 王超(chao),赵铁栓,韩(han)高(gao)阳,等(deng). 激光(guang)熔敷技(ji)术应(ying)用(yong)于(yu)新品制造(zao)的(de)研究[J]. 建(jian)设机械(xie)技(ji)术与(yu)管理,2017,30(08):79-82.
Wang Chao,Zhao Tiezhu,Gaoyang Han,et al. Applythe Laser Cladding Technology to the New ProductManufacturing[J]. Construction Machinery Technology & Management,2017,30(08):79-82.
[14] 吴(wu)影,刘艳,陈文(wen)静,等(deng). 超(chao)高(gao)速激光熔覆技术研(yan)究现状及其发展方向(xiang)[J]. 电(dian)焊(han)机,2020,50(03):1-10.
WU Ying,LIU Yan,CHEN Wenjing,et al. Researchstatus and development direction of extreme high-speedlaser material deposition[J]. Electric Welding Machine,2020,50(03):1-10.
[15] LIU Y B,LIU Y,TANG H P,et al. Fabrication andmechanical properties of in situ TiC/Ti metal matrixcomposites[J]. Journal oI Alloys g- Compounds,2011,509(8):3592-3601.
[16] SHAKTI K,AMITAVA M,DAS A K,et al. Parametricstudy and characterization of A1N-Ni-Ti6A14V compositecladding on titanium a11oy[J]. Surface and Coatings Technology,2018,349:37-49.
[17] 覃(tan)鑫(xin),祁文(wen)军,左(zuo)小(xiao)刚. TC4 钛(tai)合金表(biao)面(mian)激光(guang)熔(rong)覆NiCrCoAlY-Cr3C2复(fu)合涂(tu)层(ceng)的摩(mo)擦(ca)和高温抗(kang)氧(yang)化性能[J]. 材料工(gong)程(cheng),2021,49(12):107-114.
Qin Xin,Qi Wenjun,Zuo Xiaogang. Friction andHigh Temperature Oxidation Resistance of Laser CladdingNiCrCoAIY-Cr3C2 Composite Coating on TC4 Titanium Alloy[J]. Journal of Materials Engineering,2021,49(12):107-114.
[18] YANG C,CHENG X,TANG H B,et al. Influence ofmicrostructures and wear behaviors of the microalloyedcoatings on TC11 alloy surface using laser claddingtechnique[J]. Surface&Coatings Technology,2017,337(4):97-103.
[19] ZHAO G L,ZOU Y,ZOU Z D,et al. Research on insitu synthesised(Ti,V)C/Fe composite coating by lasercladding[J].Materials Science & Technology,2014,31(11):1329-1334.
[20] 安强,祁文军(jun),左小(xiao)刚(gang). TA15 钛(tai)合(he)金(jin)表(biao)面(mian)原位(wei)合(he)成(cheng)TiC 增强(qiang)钛基(ji)激(ji)光(guang)熔(rong)覆(fu)层的(de)组织(zhi)与(yu)耐磨性[J]. 材(cai)料(liao)工(gong)程(cheng),2022,55(4):139-146.
An Qiang,Qi Wenjun,Zuo Xiaogang. Microstructureand Wear Resistance of In- situ TiC reinforced TibasedCoating by Laser Cladding on TA15 Titanium Alloy Surface[J]. Journal of Materials Engineering,2022,55(4):139-146.
[21] 刘(liu)丹(dan). TC4钛(tai)合金表面(mian)激(ji)光(guang)熔(rong)覆复合涂(tu)层(ceng)及耐磨(mo)性(xing)能研究[D]. 湖(hu)南:南华(hua)大(da)学(xue),2015.
Liu Dan. The Resea Rch of Laser Cladding CompositeCoaying and Wear-resistance on TC4 alloy[D]. Hunan:University of South China,2015.
[22] 苏猛(meng). 环(huan)形件激(ji)光熔覆(fu)再(zai)制造研(yan)究[D]. 河(he)北(bei):燕(yan)山大学,2016.
Su Meng. Research on High-power Semiconductor LaserCladding Circular Workpieces Remanufa Cturing[D]. Hebei:Yanshan University,2016.
[23] 陈(chen)珂玮,陈永(yong)雄(xiong),孔令超,等(deng). 环(huan)形(xing)激(ji)光(guang)熔覆(fu)技术(shu)研(yan)究(jiu)现状(zhuang)及(ji)展望[J/OL]. 表面技(ji)术,2022:1-9. http://kns.cnki.net/kcms/detail/50.1083.TG.20220302. 1643.0 03. html.
Chen Kewei,Chen Yongxiong,Kong Lingchao,et al.Research Progress and Perspective in the Annular LaserCladding Technology[J/OL]. Surface Technology:2022:1-9. http://kns.cnki.net/kcms/detail/50.1083. TG. 20220302. 1643.003. html.
[24] 牛(niu)宗伟,李(li)明(ming)哲(zhe). 钛合金(jin)微弧氧(yang)化技术(shu)的研究(jiu)进(jin)展(zhan)[J]. 电(dian)镀(du)与(yu)环保,2015(1):1-4.
Niu Zongwei,Li Mingzhe. Research Progress of MicroarcOxidation Technology for Titanium Alloy[J]. Electroplating& Pollution Control,2015(1):1-4.
[25] Yang W,Xu D P,Wang J L,et al. Microstructure andcorrosion resistance of micro arc oxidation plus electrostaticpowder spraying composite coating on magnesiumalloy[J]. Corrosion Science,2018,136:174-179.
[26] Zhang D Y,Ge Y F,Liu G L,et al. Investigation oftribological roperties of micro-arc oxidation ceramiccoating on Mg alloy under dry sliding condition[J]. CeramicsInternational,2018,44(14):16164-16172.
[27] 董(dong)凯辉(hui),宋影伟,韩恩厚. 钛合(he)金内膜(mo)微弧氧化(hua)制(zhi)备(bei)技术(shu)的研究进(jin)展[J]. 表(biao)面技(ji)术(shu),2021,50(7):57-66.
Dong Kaihui,Song Yingwei,Han Enhou. ResearchProgress on the Preparation of Wear-resistant Micro-arcOxidation Coatings on Titanium Alloys[J]. Surface Technology,2021,50(7):57-66.
[28] 陈宏(hong),丁健(jian),陈永楠,等. 钛合(he)金微弧(hu)氧化(hua)生(sheng)物(wu)膜(mo)制备与性(xing)能研究(jiu)[J]. 表(biao)面技(ji)术,2021(50):45-51.
Chen Hong,Ding Jian,Chen Yongnan,et al. Study onPreparation and Properties of Micro-arc Oxidation Biofilmon Titanium Alloy[J]. Surface Technology,2021(50):45-51.
[29] Shuo-Jen L,Le H,Toan D. Effects of copper additiveon microarc oxidation coating of LZ91 magnesiumlithiumalloy[J]. Surface and Coatings Technology,2016,307:781-789.
[30] Chen Q Z,Jiang Z Q,Tang S G,et al. Influence ofgraphene particles on the micro-arc oxidation behaviorsof 6063 aluminum alloy and the coating properties[J].Applied Surface Science,2017,423:939-950.
[31] 李(li)玉(yu)海(hai),张勤(qin),刘馨(xin),等. TC4 钛(tai)合(he)金微(wei)弧氧化复合陶瓷(ci)膜制(zhi)备及耐(nai)磨(mo)性(xing)能研(yan)究(jiu)[J]. 功(gong)能(neng)材料(liao),2015,46(09):9128-9132.
Li Yuhai,Zhang Qin,Liu Xin,et al. Investigation onPreparation and Wear Resistance of Micro-arc OxidationCompositeceramic Coatings on TC4 Titanium Alloy [J]. Ournal of Functional Materials,2015,46(09):9128-9132.
[32] 解(jie)念锁,武立志. 微(wei)弧氧(yang)化对TC4钛合金(jin)高(gao)温(wen)抗氧化(hua)性能(neng)的影响[J]. 铸造(zao)技术(shu),2012,33(04):416-418.
Xie Niansuo,Wu Lizhi. Effects of Micro-arc Oxidationon High-temperature Oxidation Resistance of TC4Titanium Alloy[J]. Foundry Technology,2012,33(04):416-418.
[33] 杨泽(ze)慧(hui),王楠(nan),陈(chen)永楠(nan),等(deng). TC4 合金表(biao)面(mian)微弧(hu)氧(yang)化原位(wei)生(sheng)长自润滑MoS2/TiO2膜(mo)层研(yan)究[J]. 稀有(you)金(jin)属材(cai)料(liao)与(yu)工程(cheng),2020,49(9):3198-3205.
Yang Zehui,Wang Nan,Chen Yongnan,et al. Studyon Self-lubricating MoS2/TiO2 Coating Synthesized onTC4 Surface by Micro-arc Oxidation[J]. Rare Metal Materials and Engineering,2020,49(9):3198-3205.
[34] He X,Song R G,Kong D J. Microstructure and corrosionbehaviours of composite coatings on S355 offshoresteel prepared by laser cladding combined withmicro-arc oxidation[J]. Applied Surface Science,2019,497(15):143703.
[35] Ye Wang,Danhua Lu,Guolong Wu,et al. Effect of lasersurface remelting pretreatment with different energydensity on MAO bioceramic coating[J]. Surface &Coatings Technology,2020,393:125815.
[36] Kamal S,Jayaganthan R,Prakash S. Evaluation of cyclichot corrosion behaviour of detonation gun sprayedCr3C2-25%NiCr coatings on nickel- and iron-based superalloys[J]. Surface and Coatings Technology,2009,203(8):1004-1013.
[37] Hsiung J C,Tzeng J,Kung K. A Study of ThermalSpray Coating on Artificial Knee Joints[J]. Life ScienceJournal,2013,10(2):457-463.
[38] Huang J,Liu Y,Yuan J H. Al/Al2O3 Composite CoatingDeposited by Flame Spraying for Marine Applica‐tions:Alumina Skeleton Enhances Anti-Corrosion andWear Performances[J]. Journal of thermal spray technology,2014,23(4):676-683.
[39] Wu Y Z,Zhang D. Electrochemical corrosion behaviorsand microhardness of laser thermal sprayed amorphousAlCrNi coating on S275JR steel[J]. Optics andLaser Technology,2019,118:115-120.
[40] 李(li)长久(jiu). 热(re)喷(pen)涂技(ji)术(shu)应用(yong)及(ji)研究进展与挑战(zhan)[J]. 热(re)喷(pen)涂技术(shu),2018,10(04):1-22.
Li Changjiu. Applications,Research Progresses and FutureChallenges of Thermal Spray Technology[J]. ThermalSpray Technology,2018,10(04):1-22.
[41] Huang J,Liu Y,Yuan J H. Al/Al2O3 Composite CoatingDeposited by Flame Spraying for Marine Applications:Alumina Skeleton Enhances Anti-Corrosion andWear Performances[J]. Journal of thermal spray technology,2014,23(4):676-683.
[42] Bonabi S F,Ashrafizadeh F,Sanati A N,et al. Structureand Corrosion Behavior of Arc-Sprayed Zn-AlCoatings on Ductile Iron Substrate[J]. Journal of ThermalSpray Technology,2018,27(3):524-537.
[43] 李长(zhang)久. 中(zhong)国(guo)冷(leng)喷(pen)涂研(yan)究(jiu)进(jin)展[J]. 中(zhong)国(guo)表(biao)面(mian)工程(cheng),2009,22(4):5-14.
Li Changjiu. The State-of-art of Research and Developmenton Cold Spraying in China[J]. China Surface Engineering,2009,22(4):5-14.
[44] HASSANI-GANGATAJ S M,MORlDl A,GGAGLIANOM. Critical review of corrosion protection by coldspray coatings[J]. Surface Engineering,2015,31(11):803-815.
[45] GHELICHI R,MACDONALD D,BAGHERIFARDS,et al. Microstructure and fatigue behavior of coldspray coated[J]. Acta Materialia,2012,60(19):6555-6561.
[46] MENG X,ZHANG J,ZHAO J,et al. In fluence of gastemperature on microstructure and properties of coldspray 304SS coating[J]. Joumal of Materials Science& Technology,2011,27(9):809-815.
[47] KARTHIKEYAN,YAN J. The advantages and disadvantagesof the cold spray coating process[J]. ColdSpray Materials Deposition Process,2007:62-71.
[48] HGSSAIN T,MCCAARTNEY D G,SHIPWAY P H,et al. Corrosion behavior of cold sprayed titanium coatingsand free standing deposits[J]. Journal of ThermalSpray feclmology ,2010,20(1-2):260-274.
[49] KHUN W,TAN A W Y,BI K U W,et al. Effects ofworking gas on wear and corrosion resistances of coldsprayed Ti-6A1-4V coatings[J]. Surface & CoatingsTechnology,2016,302:1-12.
[50] GHELICHI R,GUAGLIANO M. Coating by the colesparay process:A state of the art[J]. Frattura ed IntegritaSturtturale,2009,3(8):30-44.
[51] 周(zhou)红霞,李成新,李长(zhang)久. 冷(leng)喷涂(tu)制(zhi)备钛及(ji)钛合金(jin)涂层(ceng)研(yan)究(jiu)进(jin)展(zhan)[J]. 中国表(biao)面(mian)工程(cheng),2020,33(2):1-14.
Zhou Hongxia,Li Chengxin,Li Changjiu. ResearchProgress of Cold Sprayed Ti and Ti Alloy Coatings[J].China Surface Engineering,2020,33(2):1-14.
[52] Li W Y,ZHANG C,WANG H T,et al. Significant influencesof metal reactibity and oxide films at particlesurgaces on coating microstructure in cold spraying[J].Applied Surface Science,2007,253(7):3557-3562.
[53] 李海(hai)升,刘坤(kun),李文亚(ya),等(deng). TC4 钛合金表面(mian)冷(leng)喷(pen)涂(tu)制备CuNiIn 涂层(ceng)组(zu)织及其(qi)微动(dong)磨(mo)损性能研(yan)究[J]. 材料(liao)保(bao)护,2022,55(1):22-27.
LI Hai-sheng,LIU Kun,LI Wen-ya,et al.Microstructureand Fretting Wear Properties of CuNiIn CoatingPrepared by Cold Spraying on Surface of TC4 Titanium Alloy[J]. Material Protection,2022,55(1):22-27.
[54] Ll C J,Ll W Y. Deposition characteristics of titaniumcoating in cold spraying[J]. Surface&Coatings Technology,2003,167(2-3):278-283.
[55] PELLETIER J L. Development of Ti-6Al-4V CoaringontoTi-6Al-4V substrate using low pressure cold sprayand pulse gas dynamic spray[M]. Gniversity of Ottawa,2013.
[56] YIN S,SUO X,SU J,et al. Effects of substrate hardnessand spray angle on the deposition behavior of coldsprayedT'i particles[J]. Journal of Thermal SprayTeclmology,2013,23(1-2):76-83.
[57] ZAHIRI S H,ANTONIO C I,JAHEDI M. Eliminationof porosity in directly fabricated titanium via coldgas dynamic spraying[J]. Journal of Materials ProcessingTechnology,2009,209(2):922-929.
[58] WONG W,REZAELAN A,lRISSOG L,et al. Coldspray characteristics of commercially pure Ti and Ti6-A14-V[J]. Advanced Materials Research,2010,89- 91:639-644.
[59] MGNAGALA V NV,IMBRIGLIO S I,CHROMIK RR. Significant influences of metal reactibity and oxidefilms at particle surgaces on coating microstructure in
cold spraying Ti6A14V single splats[J]. Materials Letters, 2019,244:58-61.
[60] SCHMIDT T,GRTNER F,ASSADI H,et al. Developmentof a generalized parameter window for cold spraydeposition[J]. Acta materialia,2006,54(3):729-742.
[61] Shuo Yin,Xinkun Suo,Zhiwei Guo,et al. Depositionfeatures of cold sprayed copper particles on preheatedsubstrate[J]. Surface &Coatings Technology, 2015,268:252-256.
[62] CINCA N,BARROSA M,DOSTA S,et al. Study of'Tideposition onto A1 alloy by cold gas spraying[J]. Surface& Coatings'fechnology,2010,205(4):1096-1102.
[63] HGANG R.The importance of Optimizing Nozzle dimensionsfor cold spray process[C]//Proceedings of theThermal Spray Conference,2015.
[64] LI WY,L1AO H,WANG H T,et al. Optimal design ofa convergent-barrel cold spray nozzle by numericalmetliod[J]. Applied Surface Science,2006,253(2):708-713.
[65] MACDONALD D, LEBLANC-ROBERT S, FERNNDEZ R,et al. Effect of nozzle material on downstreamlateral injection cold spray performance[J]. Journal offbermal Spray Technology,2016,25(6):1149-1157.
[66] L1 W Y,Z11ANG C,GGO X,et al. Ti and Ti-6A1-4Vcoatinks by cold spraying and microstructure modificationby cnattreatment[J]. Advanced Engineering Materials,2007,9(5):418-423.
相(xiang)关(guan)链接(jie)