钛合金紧固件(jian)因其(qi)强度高(gao)、密(mi)度低(di)、抗疲劳(lao)、耐(nai)腐蚀(shi)、无(wu)磁性(xing)等优点,在(zai)船(chuan)舶(bo)等领域中(zhong)被广泛使(shi)用[1-5]。在(zai)多数应用情(qing)形(xing)下,钛(tai)合金紧(jin)固件(jian)会(hui)与(yu)异种材(cai)料(liao)连接,如铝(lv)合金、钢(gang)铁等[6-9]。在(zai)大(da)气和(he)海(hai)洋环境中(zhong),钛合金(jin)表面会生(sheng)成(cheng)致(zhi)密的氧(yang)化(hua)膜(mo),使其电(dian)化(hua)学活性(xing)降(jiang)低。此时钛合(he)金(jin)紧固(gu)件(jian)和被固定(ding)件之间(jian)会(hui)发(fa)生(sheng)电偶(ou)腐蚀(shi),导致被(bei)固(gu)定件(jian)腐(fu)蚀(shi)速(su)率(lv)被大(da)幅(fu)加(jia)快(kuai),最(zui)终引起固(gu)定(ding)失效(xiao)[10-11]。
目前(qian)解决(jue)钛(tai)合(he)金(jin)紧固(gu)件(jian)(钛合金(jin)螺丝)电(dian)偶(ou)腐蚀常(chang)用(yong)途径:一(yi)是减(jian)小钛(tai)合金与(yu)被固定材料(liao)之间(jian)的(de)电化学活(huo)性(xing)差异(yi),如对钛(tai)合金紧固件进(jin)行(xing)电镀(du)镉、镀(du)铝、涂(tu)铝;二(er)是(shi)增大(da)钛(tai)合(he)金紧固件(jian)和被固定(ding)件间(jian)的(de)电阻,如(ru)涂覆有机(ji)、无机涂层,或者在安装(zhuang)中(zhong)使(shi)用湿(shi)底(di)漆(qi)或弹性密(mi)封胶(jiao)[12-16]。
这(zhe)些(xie)方(fang)法存(cun)在(zai)成(cheng)本(ben)高、工(gong)艺复(fu)杂、影响(xiang)紧(jin)固(gu)效(xiao)果等缺(que)点。硬(ying)膜缓蚀(shi)剂(ji)是一(yi)种(zhong)由(you)成膜(mo)剂(ji)、缓蚀剂(ji)、溶剂(ji)和(he)助剂(ji)等(deng)多种(zhong)物(wu)质(zhi)组(zu)成的缓(huan)蚀剂,它具有很(hen)强的渗透性(xing)和(he)水分(fen)置(zhi)换能(neng)力(li),可以(yi)进(jin)入极小(xiao)的(de)缝隙(xi)或(huo)孔(kong)内,将其(qi)中(zhong)的水分和盐置换出来,并(bing)覆(fu)盖(gai)一层(ceng)保护性(xing)膜(mo)层,从而(er)起到(dao)防(fang)腐效(xiao)果(guo)[17-18]。由于(yu)其(qi)独特的(de)缓蚀作(zuo)用(yong)机制(zhi),硬膜(mo)缓(huan)蚀剂(ji)对铝(lv)合金(jin)、镁合金(jin)、锌(xin)、镉、铜(tong)、黄(huang)铜(tong)等金属材(cai)料均(jun)有良(liang)好(hao)的缓蚀效(xiao)果(guo)。
本研(yan)究(jiu)提(ti)出利(li)用硬膜缓(huan)蚀剂(ji)对(dui)紧固件(jian)组件(jian)进(jin)行(xing)整(zheng)体腐蚀防护处理,通(tong)过盐(yan)雾(wu)加速腐蚀试(shi)验(yan)、腐蚀形貌(mao)观(guan)察、力(li)学(xue)性能(neng)测试等(deng)手段,研(yan)究(jiu)了YTF-3硬膜缓蚀剂对(dui)由(you)TC4螺(luo)栓(shuan)、不(bu)锈(xiu)钢螺母与7050铝(lv)合金(jin)夹板以(yi)及钛(tai)合(he)金夹板(ban)分(fen)别(bie)组成(cheng)的紧固(gu)件(jian)组(zu)件(jian)电偶腐蚀的影响(xiang)作用。
1、试验
1.1材料(liao)
试(shi)验中(zhong)使(shi)用(yong)国产齿轮槽100°沉头(tou)TC4钛(tai)合(he)金螺(luo)栓(shuan),螺(luo)母(mu)采(cai)用(yong)国产(chan)无(wu)耳(er)托(tuo)板(ban)自(zi)锁不(bu)锈(xiu)钢(gang)螺(luo)母(mu),夹(jia)层(ceng)板(ban)选用(yong)2块厚(hou)度分(fen)别(bie)为6、13mm的7075铝合金板(表面采(cai)用(yong)阳极(ji)氧化(hua)外加(jia)富锌黄(huang)底(di)漆(qi)处(chu)理(li))或2块(kuai)厚(hou)度(du)分别(bie)为(wei)6、13mm的TC4钛(tai)合金板(ban)(未(wei)进行(xing)表(biao)面处(chu)理(li)),以(yi)下(xia)分(fen)别(bie)称(cheng)为LL试(shi)样和TT试(shi)样。试(shi)样尺寸(cun)及装配(pei)形式(shi)如图(tu)1和(he)图(tu)2所示(shi)。

1.2方法
本(ben)研(yan)究采用(yong)盐(yan)雾加(jia)速(su)腐(fu)蚀试(shi)验(yan)分别(bie)对(dui)一(yi)个LL试样(含(han)15个(ge)螺(luo)栓(shuan)螺(luo)母(mu))和(he)一(yi)个TT试样(含(han)15个螺栓(shuan)螺母(mu))的电偶(ou)腐(fu)蚀(shi)行(xing)为(wei)进行(xing)测试(shi),加速试(shi)验图(tu)谱如(ru)图(tu)3所(suo)示(shi)。在(zai)加速(su)试验(yan)中,每7d为(wei)1个(ge)循环(huan),总共进行10个循环(huan),即(ji)试(shi)验总时(shi)间(jian)为(wei)70d。1个试(shi)验循环(huan)由(you)2步试验(yan)组(zu)成(cheng),第一步(bu)试(shi)验持(chi)续6d,试验(yan)条件:
温(wen)度(du)为70℃,相对(dui)湿(shi)度为(wei)95%~100%,喷(pen)酸(suan)性(xing)盐雾溶(rong)液(NaCl质量(liang)分数为(wei)5%,pH=4.0~5.0);第(di)二步试(shi)验持续试验1d,试验条(tiao)件:温(wen)度为50℃,相对湿(shi)度为0%~40%,不喷(pen)洒盐(yan)雾(wu)。

当(dang)试(shi)验(yan)周期达(da)到(dao)5个循环(huan)(35d)时,先检(jian)查(cha)试(shi)样腐(fu)蚀(shi)情(qing)况(kuang),随后将试样(yang)分(fen)为(wei)左、中(zhong)、右3个部位(wei)(如图4所(suo)示),左侧部(bu)分(fen)使(shi)用(yong)清(qing)水(shui)去(qu)除(chu)表(biao)面(mian)盐(yan)渍和锈(xiu)迹,中间和右侧部(bu)分不做处(chu)理(li),待(dai)试(shi)样全(quan)部晾至(zhi)干燥状(zhuang)态后(hou),使用YTF-3硬(ying)膜缓蚀剂对(dui)试(shi)验件左(zuo)边(bian)部(bu)分进(jin)行(xing)缓蚀(shi)保(bao)护(hu)。具体(ti)操作(zuo)流程(cheng):先用软毛刷(shua)将(jiang)缓(huan)蚀剂均(jun)匀刷(shua)涂(tu)于试(shi)样(yang)上(shang)半(ban)部(bu)分(fen),室温干(gan)燥30min后(hou)刷涂(tu)第二(er)遍(bian),随后(hou)在室(shi)温下干燥(zao)72h后(hou)即(ji)可。完(wan)成以(yi)上流(liu)程后,取出(chu)右侧(ce)部分(fen)螺(luo)栓进行力学拉伸试(shi)验(yan),继续(xu)开(kai)展后续5个(ge)循环的加速(su)腐(fu)蚀(shi)试验(35d)。
在(zai)加速腐蚀(shi)试验(yan)中(zhong),定期取(qu)出(chu)试样使用NikonD50数码(ma)相机进行(xing)拍照(zhao)记录(lu),并采用图(tu)像处理方式(shi),计(ji)算(suan)腐(fu)蚀(shi)、起(qi)泡(pao)区(qu)域的(de)面积(ji),评(ping)价等效扩展长(zhang)度。采用微机(ji)控(kong)制电子(zi)万(wan)能试验(yan)机(ji)对经(jing)过加速(su)腐(fu)蚀试(shi)验(yan)后(hou)的螺栓开(kai)展室温拉伸(shen)试验,拉(la)伸(shen)时(shi)采用(yong)位(wei)移(yi)控(kong)制的方(fang)式,加(jia)载速率(lv)为5mm/min,并(bing)采(cai)用(yong)Quantro扫(sao)描(miao)电镜观察(cha)分析(xi)断口形(xing)貌。
2、结(jie)果及分(fen)析
2.1腐(fu)蚀试验(yan)结(jie)果(guo)
2类(lei)试样经不同循环试(shi)验(yan)周(zhou)期(qi)的(de)宏观形貌(mao)如(ru)图5所示。从图5可(ke)以(yi)看到(dao),试验(yan)前(qian)LL试样和(he)TT试(shi)样(yang)的涂层和(he)螺栓螺(luo)母(mu)外(wai)观状(zhuang)态完好,没有任何(he)肉(rou)眼可(ke)见的(de)缺(que)陷。从(cong)图(tu)5b可(ke)知(zhi),随(sui)着(zhe)试(shi)验时(shi)间的延(yan)长(zhang),LL试(shi)样经5个循(xun)环试(shi)验后(hou),紧(jin)邻(lin)螺母(mu)附(fu)近(jin)的铝(lv)合(he)金(jin)发(fa)生(sheng)严重(zhong)腐蚀,产(chan)生大(da)量(liang)的氧(yang)化(hua)铝(lv)。由(you)于(yu)氧(yang)化(hua)铝(lv)体积远比(bi)原(yuan)始(shi)铝(lv)合(he)金体(ti)积大,因此(ci)大(da)量(liang)的(de)氧(yang)化铝(lv)腐(fu)蚀产(chan)物顶破锌(xin)黄(huang)底(di)漆膨(peng)胀(zhang)而(er)出;白色腐蚀产(chan)物(wu)外圈涂(tu)层(ceng)有(you)明显鼓(gu)泡(pao)现象,表(biao)明涂(tu)层(ceng)下方(fang)也发(fa)生(sheng)了(le)腐(fu)蚀;远离(li)螺(luo)栓、螺母(mu)区(qu)域(yu)涂(tu)层(ceng)未破损(sun),无白色(se)腐(fu)蚀产物生(sheng)成。LL试(shi)样螺(luo)栓(shuan)、螺母(mu)未(wei)见(jian)明显(xian)腐蚀现象。这(zhe)是(shi)因为(wei)铝(lv)合金板与(yu)钛合(he)金螺(luo)栓(shuan)之(zhi)间(jian)由于电位(wei)差(cha)形(xing)成(cheng)了(le)电(dian)偶腐(fu)蚀(shi),导(dao)致作(zuo)为(wei)阳极(ji)的铝合金(jin)板(ban)在循(xun)环(huan)试(shi)验中(zhong)发生(sheng)了(le)腐(fu)蚀,生(sheng)成(cheng)氧化(hua)铝(lv)的白(bai)色腐(fu)蚀产(chan)物(wu)[19]。TT试样(yang)经5个循环(huan)试(shi)验(yan)后,螺(luo)母表面(mian)生成(cheng)了明(ming)显(xian)棕褐色(se)锈(xiu)蚀(shi)产物(wu),这(zhe)说明(ming)铁基(ji)的不锈(xiu)钢螺母发生了(le)腐蚀,且在(zai)试(shi)验过(guo)程(cheng)中顺沿螺母(mu)流至涂(tu)层表面,但(dan)钛(tai)合(he)金(jin)层(ceng)合板(ban)表面(mian)涂层未(wei)发生(sheng)明(ming)显(xian)破(po)损(sun)现象。这是(shi)因(yin)为(wei)钛(tai)合(he)金(jin)板(ban)与不(bu)锈(xiu)钢(gang)螺母(mu)由于电位差(cha)形成了(le)电偶腐蚀(shi),螺(luo)母作(zuo)为阳极先(xian)发生腐(fu)蚀(shi),生(sheng)成棕色腐(fu)蚀产物(wu)[20]。

刷(shua)涂(tu)硬(ying)膜缓(huan)蚀剂后,继续试验(yan)5个(ge)循(xun)环后(hou)(70天)的外观(guan)形貌(mao)如(ru)图(tu)5c所(suo)示(shi)。对(dui)螺(luo)母(mu)附近腐(fu)蚀(shi)与(yu)起泡区域进(jin)行了标(biao)记,共(gong)划(hua)分(fen)了(le)11个(ge)区(qu)域,其中(zhong)1#~3#、6#~8#区(qu)域(yu)为(wei)刷(shua)涂硬膜(mo)缓(huan)蚀(shi)剂(ji)区域,4#、5#、9#~11#区(qu)域为未刷涂硬(ying)膜(mo)缓蚀(shi)剂区域。从(cong)图(tu)5c中可知(zhi),试样(yang)刷(shua)涂(tu)硬(ying)膜(mo)缓蚀(shi)剂(ji)区(qu)域(yu)涂(tu)层光泽(ze)较(jiao)暗(an),旧腐蚀(shi)区域灰暗(an)色(se),无明显新白(bai)色(se)腐蚀(shi)产物(wu)生成;而未(wei)刷涂缓(huan)蚀(shi)剂(ji)区(qu)域(yu),有(you)明(ming)显(xian)新白色腐(fu)蚀产物生(sheng)成(cheng)。试(shi)样(yang)刷(shua)涂硬膜(mo)缓蚀剂未腐蚀区域涂(tu)层(ceng)除色(se)泽(ze)较暗外(wai),其(qi)余无变(bian)化(hua),表明硬(ying)膜缓(huan)蚀(shi)剂(ji)、锌(xin)黄底漆(qi)、阳极氧化膜的匹配性(xing)较(jiao)好。TT试样(yang)表(biao)面刷涂硬(ying)膜缓蚀剂区(qu)域锌(xin)黄(huang)底漆涂(tu)层(ceng)有(you)大量(liang)褶皱形成,且(qie)表(biao)面(mian)多处出现(xian)破(po)损(sun)现象(xiang),表(biao)明(ming)硬(ying)膜(mo)缓蚀(shi)剂(ji)、锌(xin)黄(huang)底(di)漆与钛合(he)金(jin)的(de)匹配性(xing)较(jiao)差(cha)。这(zhe)是由(you)于锌黄底漆(qi)与(yu)光亮(liang)钛(tai)合(he)金表面(mian)的(de)附(fu)着力(li)较(jiao)差,硬膜(mo)缓蚀(shi)剂(ji)在锌(xin)黄(huang)底(di)漆(qi)固(gu)化过程中会产生较大(da)内应(ying)力(li),最终(zhong)引(yin)发(fa)褶皱生成(cheng)[21]。

图(tu)5c中(zhong)LL试样螺母附近(jin)标记区(qu)域对(dui)应面积见(jian)表(biao)1和(he)表(biao)2,刷涂(tu)缓(huan)蚀(shi)剂(ji)区域(yu)的平(ping)均腐(fu)蚀(shi)面积为(wei)5.75cm2,从(cong)螺(luo)母中(zhong)心(xin)起(qi)扩展(zhan)的平均(jun)等(deng)效半(ban)径为15.0mm;未(wei)刷涂(tu)缓蚀剂区(qu)域的(de)腐蚀面积为(wei)7.45cm2,平均(jun)等效半(ban)径为(wei)16.4mm。6#与9#腐蚀(shi)区(qu)域(yu)的外(wai)观如图(tu)6所(suo)示。6#区(qu)域腐蚀(shi)面积(ji)为6.57cm2,腐蚀(shi)的(de)最(zui)大(da)扩(kuo)展长(zhang)度(du)为19.1mm,最短扩(kuo)展(zhan)长度为4.0mm;9#区域腐(fu)蚀(shi)面(mian)积为(wei)8.94cm2,腐蚀的最大(da)扩展长(zhang)度(du)为(wei)16.7mm,最短(duan)扩展长(zhang)度为(wei)6.4mm。综上所(suo)述(shu),未(wei)刷涂硬(ying)膜缓蚀(shi)剂区域(yu)在后(hou)续试(shi)验(yan)过(guo)程中(zhong)发生(sheng)了(le)腐蚀扩展(zhan),而刷(shua)涂硬膜缓(huan)蚀(shi)剂(ji)能隔绝了外(wai)界(jie)腐蚀(shi)介(jie)质的渗入,有(you)效缓解腐(fu)蚀(shi)的发(fa)生(sheng)与扩(kuo)展(zhan),具(ju)有(you)较好的防(fang)护(hu)效(xiao)果(guo)。

2.2腐蚀(shi)后(hou)力(li)学性能影响分析
钛(tai)合金螺栓经(jing)过(guo)不(bu)同时(shi)长(zhang)腐蚀加(jia)速试(shi)验后的(de)力(li)-位(wei)移曲(qu)线(xian)见(jian)图(tu)7a,最(zui)大拉(la)断载荷见图(tu)7b。可(ke)以看到,钛合(he)金螺(luo)栓(shuan)经过腐(fu)蚀(shi)试(shi)验35d后,最(zui)大(da)拉(la)断载荷为(wei)47.6kN,试(shi)验70d后(hou)为(wei)47.4kN,降幅仅(jin)为0.5%。这(zhe)说(shuo)明(ming)钛合(he)金(jin)螺(luo)栓的(de)力学性能(neng)在腐(fu)蚀加(jia)速(su)试验(yan)中未发(fa)生明显损失(shi)。

钛(tai)合金(jin)螺(luo)栓(shuan)拉(la)伸断(duan)口(kou)微(wei)观形貌(mao)如图(tu)8所(suo)示(shi)。可以(yi)看(kan)到(dao),螺(luo)栓(shuan)断(duan)口(kou)裂(lie)纹起(qi)始于(yu)螺纹(wen)根部,断(duan)口边缘A区域微观(guan)形貌(mao)为(wei)细小撕裂韧窝的韧性(xing)断裂(lie),韧窝开(kai)口指(zhi)向(xiang)裂纹扩展(zhan)方向(xiang);断口裂纹源附(fu)近(jin)B区(qu)域微(wei)观(guan)形貌(mao)为细(xi)小撕(si)裂(lie)韧(ren)窝的韧(ren)性断(duan)裂(lie),韧窝(wo)开口指向(xiang)裂(lie)纹(wen)扩(kuo)展方向;断口芯(xin)部(bu)C区域微观形(xing)貌为韧窝(wo)的(de)韧性断裂(lie)。这说明钛合金(jin)螺栓断裂机(ji)制(zhi)为韧性断裂,并未(wei)受到(dao)腐蚀试(shi)验的影(ying)响(xiang)而发(fa)生(sheng)脆性(xing)断裂(lie)[22-24]。

2.3腐蚀形貌(mao)分析
试(shi)验(yan)过程(cheng)中,铝合金上涂层(ceng)渐(jian)进(jin)损伤(shang)至(zhi)腐蚀(shi)发生扩展的(de)进程(cheng)如(ru)图(tu)9所(suo)示。铝(lv)合(he)金(jin)夹层(ceng)板(ban)制(zhi)孔前(qian)喷(pen)涂(tu)锌黄(huang)底(di)漆,即(ji)螺栓、螺母与夹层(ceng)板孔连接(jie)界面(mian)无防(fang)护涂层保护,在(zai)试(shi)验(yan)过(guo)程中,腐(fu)蚀介质(zhi)容易(yi)从(cong)连(lian)接(jie)孔隙(xi)进入连(lian)接界(jie)面,发(fa)生电偶(ou)腐(fu)蚀(shi)。铝(lv)合金(jin)阳极氧化层(ceng)表(biao)面(mian)的(de)锌(xin)黄(huang)底(di)漆厚度较(jiao)薄(bao),且(qie)涂(tu)层中(zhong)存在(zai)着宏(hong)观和微观缺(que)陷(xian),如(ru)毛细(xi)孔、基料(liao)与颜料(liao)的(de)界(jie)面(mian)空(kong)隙、单体交(jiao)联(lian)后结构中(zhong)的孔隙等(deng)[25],如图9a所(suo)示(shi)。随着(zhe)试(shi)验(yan)的进行,连接孔隙(xi)附近(jin)缝(feng)隙(xi)及(ji)涂(tu)层(ceng)中(zhong)的(de)各(ge)种(zhong)缺(que)陷会(hui)导(dao)致腐蚀介质如(ru)H2O、O2、Cl–等(deng)穿透(tou)涂层进(jin)入(ru)界面[26]。当使(shi)用(yong)钛(tai)合金螺(luo)栓、不(bu)锈(xiu)钢螺(luo)母(mu)和钛(tai)合金夹板(ban)固定(ding)后,形成(cheng)多电(dian)极(ji)电偶(ou)腐(fu)蚀对(dui),活(huo)性相(xiang)对较(jiao)高(gao)的不锈(xiu)钢(gang)会(hui)充(chong)当(dang)阳(yang)极,腐蚀速率被(bei)加(jia)快(kuai),而将(jiang)夹板(ban)更(geng)换(huan)为活(huo)性(xing)较(jiao)高(gao)的铝合(he)金后(hou),阳极(ji)则变(bian)化至(zhi)铝(lv)合金,导(dao)致(zhi)铝合(he)金(jin)腐蚀(shi)加(jia)速[27],这(zhe)可以从铝(lv)合(he)金(jin)与钛合(he)金(jin)接触界面产生了大(da)量(liang)腐(fu)蚀产(chan)物得(de)到(dao)验证(zheng)(见图9b)。当腐(fu)蚀产(chan)物(wu)逐渐(jian)增多(duo),会对(dui)涂(tu)层(ceng)产生了较(jiao)大(da)的(de)内应(ying)力,致(zhi)使涂层(ceng)发(fa)生(sheng)鼓泡(pao)现象(xiang),涂层的(de)防(fang)护(hu)性能(neng)进(jin)一(yi)步劣化[28],如图(tu)9c所示(shi)。最后涂层(ceng)发生了(le)彻(che)底破坏,腐(fu)蚀(shi)产物(wu)与外界接(jie)触,即(ji)可(ke)明(ming)显观察(cha)到白(bai)色腐(fu)蚀产(chan)物(wu),如图9d所示。

3、结(jie)论(lun)
1)由(you)钛(tai)合金螺栓、不锈钢(gang)螺(luo)母(mu)和(he)铝(lv)合金夹(jia)层(ceng)板组(zu)成(cheng)的(de)固(gu)定(ding)件(jian),经(jing)过(guo)盐雾(wu)加(jia)速(su)试验后(hou),螺(luo)栓、螺(luo)母(mu)和(he)夹层(ceng)板(ban)间形(xing)成电(dian)偶(ou)腐(fu)蚀(shi)对(dui),导致铝(lv)合金夹层(ceng)板(ban)被严(yan)重腐蚀(shi)。
2)由钛合(he)金螺栓(shuan)、不锈钢螺(luo)母和钛合金(jin)夹(jia)层板(ban)组(zu)成的(de)固定件(jian)经(jing)过盐雾(wu)加速(su)试验后(hou),螺(luo)栓、夹层(ceng)板(ban)和(he)螺母(mu)间形(xing)成(cheng)电(dian)偶(ou)腐蚀(shi)对,导(dao)致(zhi)不锈(xiu)钢(gang)螺母(mu)被(bei)严重腐(fu)蚀(shi)。
3)YTF-3硬(ying)膜缓蚀(shi)剂(ji)可(ke)以在已发生(sheng)腐(fu)蚀(shi)的铝合金表(biao)面(mian)或铝(lv)合金(jin)上锌黄底(di)漆(qi)上固(gu)化形(xing)成(cheng)生成一(yi)层防护(hu)膜(mo),该(gai)膜层可以有(you)效(xiao)隔绝(jue)腐(fu)蚀介质(zhi)渗(shen)入,阻止电偶(ou)腐(fu)蚀的(de)发(fa)生。
4)钛合(he)金螺(luo)栓(shuan)耐腐蚀(shi)性(xing)能(neng)优(you)异(yi),无(wu)论是(shi)与(yu)铝合金(jin)或钛(tai)合金组(zu)成电偶(ou)腐蚀对后(hou),抗(kang)拉(la)性(xing)能(neng)均无(wu)明(ming)显(xian)变化(hua)。
参考文献(xian):
[1] 曲(qu)璇中. 钛(tai)合金(jin)双(shuang)耳托板(ban)自(zi)锁螺母(mu)的研(yan)制(zhi)[J]. 稀有(you)金属材料(liao)与(yu)工(gong)程, 1996, 25(4): 51-54.
QU X Z. Development of Self-Locking Nut for Titanium Alloy Double-Ear Supporting Plate[J]. Rare Metal Mate-rials and Engineering, 1996, 25(4): 51-54.
[2] 余永(yong)平(ping). 钛合金(jin)轻型双(shuang)耳托板(ban)自锁(suo)螺(luo)母研制[J]. 紧固(gu)件(jian)技术, 1995(4): 5-8.
YU Y P. Development of Titanium Alloy Light Duty Self-locking Nuts With Double Lug Bracket[J]. Fasteners Technology, 1995(4): 5-8.
[3] 郑(zheng)建锋. 提(ti)高疲(pi)劳寿(shou)命的托板(ban)自(zi)锁(suo)螺(luo)母(mu)选项研究[J].中(zhong)国科(ke)技(ji)信(xin)息(xi), 2016(17): 46-47.
ZHENG J F. Study on Self-Locking Nut Options of Pallet to Improve Fatigue Life[J]. China Science and Technol-ogy Information, 2016(17): 46-47.
[4] 张(zhang)庆(qing)玲(ling), 王(wang)庆如, 李兴(xing)无(wu). 航(hang)空(kong)用钛(tai)合(he)金紧(jin)固(gu)件(jian)选(xuan)材分析(xi)[J]. 材料(liao)工(gong)程, 2007, 35(1): 11-14.
ZHANG Q L, WANG Q R, LI X W. Materials Selection Analysis for Titanium Alloy Fasteners in Aviation Indus-try[J]. Journal of Materials Engineering, 2007, 35(1):11-14.
[5] 师俊峰, 韩珍(zhen)梅(mei). 航(hang)空紧固(gu)件(jian)钛合金(jin)材(cai)料的(de)应(ying)用(yong)现状[J]. 机(ji)械(xie)管理开发(fa), 2020, 35(5): 258-259.
SHI J F, HAN Z M. Application Status of Titanium Alloy Material for Aviation Fasteners[J]. Mechanical Manage-ment and Development, 2020, 35(5): 258-259.
[6] 解辉, 武(wu)兴(xing)伟, 刘(liu)斌(bin), 等(deng). 钛合金/其他(ta)金(jin)属在(zai)海洋(yang)环境中的(de)电(dian)偶腐蚀(shi)行为(wei)的研(yan)究(jiu)进展[J]. 材(cai)料(liao)保护(hu), 2022,55(4): 155-166.
XIE H, WU X W, LIU B, et al. Research Progress in the Galvanic Corrosion Behavior of Titanium Alloy/other Metals in Marine Environment[J]. Materials Protection,2022, 55(4): 155-166.
[7] 刘建(jian)华, 吴昊(hao), 李松梅(mei), 等. 高强(qiang)合(he)金与钛合(he)金的(de)电偶(ou)腐(fu)蚀(shi)行(xing)为[J]. 北(bei)京(jing)航(hang)空航(hang)天大(da)学学报(bao), 2003, 29(2):124-127.
LIU J H, WU H, LI S M, et al. Galvanic Corrosion Be-havior between Titanium Alloy and High-Strength Al-loys[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(2): 124-127.
[8] 郭娟. 紧(jin)固件(jian)材(cai)料与偶对(dui)材料在海(hai)水间(jian)浸下(xia)电偶(ou)腐蚀(shi)研究(jiu)[D]. 济南: 山(shan)东(dong)大学(xue), 2012.
GUO J. The Galvanic Corrosion Research between Fas-tener Materials and Coupled Materials on the Condition of Cyclic Immersion[D]. Jinan: Shandong University, 2012.
[9] 李兵(bing), 刘剑, 蒲正(zheng)海(hai), 等. 钛合金阀(fa)体件“一模(mo)多件(jian)”铸(zhu)造工(gong)艺(yi)优化(hua)设计[J]. 精密成(cheng)形工程, 2023, 15(1): 86-93.
LI B, LIU J, PU Z H, et al. Optimization Design of “One Mold Multi-Parts” Casting Process for Titanium Alloy Valve Body[J]. Journal of Netshape Forming Engineer-ing, 2023, 15(1): 86-93.
[10] 曹(cao)文(wen)健, 汤(tang)智慧(hui), 原(yuan)玲, 等. 钛(tai)合金紧(jin)固(gu)件(jian)用铝涂(tu)层(ceng)抗电偶腐蚀行为研(yan)究(jiu)[J]. 装备(bei)环(huan)境工(gong)程(cheng), 2016, 13(1):116-120.
CAO W J, TANG Z H, YUAN L, et al. Behaviour of Galvanic Corrosion Resistance of Aluminum Coating on Titanium Alloy Fastener[J]. Equipment Environmental Engineering, 2016, 13(1): 116-120.
[11] 张(zhang)晓云(yun), 汤智(zhi)慧, 孙(sun)志华, 等(deng). 钛合(he)金的(de)电(dian)偶(ou)腐蚀与(yu)防护(hu)[J]. 材料工(gong)程, 2010, 38(11): 74-78.
ZHANG X Y, TANG Z H, SUN Z H, et al. Galvanic Corrosion and Protection between Titanium Alloy and other Materials[J]. Journal of Materials Engineering,2010, 38(11): 74-78.
[12] 刘(liu)鹏(peng), 江社明, 李远(yuan)鹏(peng), 等. 高(gao)强(qiang)度(du)紧(jin)固件用涂层的耐(nai)蚀(shi)性(xing)[J]. 腐蚀与防(fang)护(hu), 2019, 40(12): 886-892.
LIU P, JIANG S M, LI Y P, et al. Corrosion Resistance of Coatings for High-Strength Fastening Parts[J]. Corrosion & Protection, 2019, 40(12): 886-892.
[13] 王贵琴, 黄(huang)晓(xiao)群. 常(chang)用紧(jin)固件(jian)的(de)耐蚀性研究[J]. 北(bei)华航天(tian)工(gong)业(ye)学院学(xue)报, 2008, 18(6): 7-8.
WANG G Q, HUANG X Q. Erosion Resistance Research for Normal Fastening Piece[J]. Journal of North China In-stitute of Aerospace Engineering, 2008, 18(6): 7-8.
[14] 郑(zheng)建(jian)锋(feng), 王(wang)旭. 民用飞机钛(tai)合(he)金紧固(gu)件表面(mian)处理的(de)应(ying)用与(yu)研(yan)究[J]. 上海涂(tu)料(liao), 2012, 50(5): 17-20.
ZHENG J F, WANG X. The Application and Research of the Surface Treatment for Civil Aircraft Titanium Alloy Fasteners[J]. Shanghai Coatings, 2012, 50(5): 17-20.
[15] 徐良(liang). 航(hang)空(kong)钛合(he)金紧固(gu)件铝涂层性能(neng)规范研(yan)究[J]. 航(hang)空(kong)标(biao)准(zhun)化(hua)与质(zhi)量, 2012(1): 32-36.
XU L. The Specification of Aluminum Pigmented Coat-ing for Aerospace Titanium Alloy Fasteners[J]. Aeronau-tic Standardization & Quality, 2012(1): 32-36.
[16] 房(fang)昺(bing), 张(zhang)鹏(peng)飞, 原玲(ling), 等(deng). 钛(tai)合(he)金(jin)紧固件用(yong)铝涂(tu)料(liao)的性(xing)能与(yu)应用[J]. 涂(tu)料工业, 2013, 43(5): 17-22.
FANG B, ZHANG P F, YUAN L, et al. Properties and Application of Al-Based Coatings for Titanium Alloy Fasteners[J]. Paint & Coatings Industry, 2013, 43(5):17-22.
[17] 姜国(guo)杰, 杨(yang)勇进(jin), 王(wang)强(qiang), 等. YTF-3 飞机硬(ying)膜(mo)缓蚀(shi)剂(ji)应用(yong)研(yan)究(jiu)[J]. 装备(bei)环(huan)境(jing)工程(cheng), 2016, 13(1): 19-23.
JIANG G J, YANG Y J, WANG Q, et al. Application Research on YTF-3 Aircraft Corrosion Inhibitor with Hard Film[J]. Equipment Environmental Engineering,2016, 13(1): 19-23.
[18] 鲁礼(li)菊(ju), 曹(cao)瑶(yao)琴(qin), 孙(sun)祚东(dong), 等(deng). TFHS-15 硬(ying)膜缓蚀(shi)剂(ji)在(zai)直(zhi)升(sheng)机(ji)上(shang)的应(ying)用(yong)研究[J]. 直(zhi)升机技(ji)术, 2016(4): 21-24.
LU L J, CAO Y Q, SUN Z D, et al. Application Research on TFHS-15 Hard Film Corrosion Inhibitor in Helicop-ters[J]. Helicopter Technique, 2016(4): 21-24.
[19] UMEDA J, NAKANISHI N, KONDOH K, et al. Surface Potential Analysis on Initial Galvanic Corrosion of Ti/Mg-Al Dissimilar Material[J]. Materials Chemistry and Physics, 2016, 179: 5-9.
[20] ARTHANAREESWARI M, SANKARA NARAYANAN T S N, KAMARAJ P, et al. Polarization and Impedance Studies on Zinc Phosphate Coating Developed Using Galvanic Coupling[J]. Journal of Coatings Technology and Research, 2012, 9(1): 39-46.
[21] FENG Z C, FRANKEL G S. Galvanic Test Panels for Accelerated Corrosion Testing of Coated Al Alloys: Part 2—Measurement of Galvanic Interaction[J]. Corrosion,2014, 70(1): 95-106.
[22] SRIDHAR N, NIKHILESH C. 4D Microstructural Char-acterization of Corrosion and Corrosion-Fatigue in a Ti-6Al-4V / AA 7075-T651 Joint in Saltwater Environ- ment[J]. Materials Science & Engineering A, 2021, 825:141886.
[23] DHANYA M S, JALAJA K, MANWATKAR S K, et al.Metallurgical Analysis of Failed Ti 6 Al 4 V Nut Used in Payload Adaptor Assembly[J]. Journal of Failure Analy-sis and Prevention, 2022, 22(6): 2209-2213.
[24] JHA A K, SINGH S K, SWATHI KIRANMAYEE M, et al. Failure Analysis of Titanium Alloy (Ti 6 Al 4 V) Fastener Used in Aerospace Application[J]. Engineering Failure Analysis, 2010, 17(6): 1457-1465.
[25] ARTHANAREESWARI M, KAMARAJ P, TAMILSELVI M. Anticorrosive Performance of Zinc Phosphate Coat-ings on Mild Steel Developed Using Galvanic Cou-pling[J]. Journal of Chemistry, 2013, 2013: 673961.
[26] DANIEL E F, WANG C G, LI C, et al. Synergistic Effect of Crevice Corrosion and Galvanic Coupling on 304SS Fasteners Degradation in Chloride Environments[J]. NPJ Materials Degradation, 2023, 7(1): 11.
[27] MORAN A, JENNINGS J, NEE H, et al. Coating Breakdown and Galvanically Accelerated Crevice Cor-rosion of Aluminum Alloys 2024 and 7075at Cad-mium-Plated Steel Fasteners[J]. CORROSION, 2019,75(5): 484-498.
[28] ZHANG H, ZHENG S H, YANG L, et al. Investigation of Fracture Performance and Interface Stress Behavior of Zn-Zn-Al Multilayer Coating-304 Stainless Steel Sub-strate System[J]. Journal of Materials in Civil Engineer-ing, 2022, 34(3): 3.
相关(guan)链接(jie)