热(re)门(men)搜(sou)索(suo)词: 钛靶 铬(ge)靶 锆(gao)靶(ba) 镍靶 钛(tai)丝 钛锻件(jian) 钛(tai)法(fa)兰(lan) 钛(tai)块(kuai) 钛加工(gong)件
引言
3D打(da)印又称增(zeng)材(cai)制(zhi)造,是快(kuai)速(su)成(cheng)型技(ji)术(shu)的(de)一(yi)种(zhong),以(yi)数字模型(xing)文(wen)件(jian)为基础,将可(ke)黏合(he)材(cai)料(liao)使用(yong)逐层(ceng)打(da)印的(de)方(fang)法构造(zao)物体的技术[1]。而生物(wu)3D打(da)印(yin)技术(shu)则是(shi)在此基(ji)础(chu)上与(yu)生(sheng)物(wu)医学相结(jie)合(he)产(chan)生的一种(zhong)新兴(xing)技术(shu)[2]。它(ta)是(shi)以细(xi)胞(bao)、活(huo)性(xing)分子和生物(wu)材料为(wei)基(ji)本成(cheng)型(xing)单(dan)元(yuan),通过(guo)受(shou)控(kong)组装(zhuang)完成(cheng)器官、组(zu)织(zhi)和仿(fang)生(sheng)产(chan)品的制造(zao)科学(xue)和技术的(de)总称[3],是(shi)传统(tong)制(zhi)造行业转(zhuan)向高(gao)端(duan)制造(zao)产业的(de)关键技(ji)术之(zhi)一,也(ye)是(shi)制造(zao)学科(ke)与医学(xue)、信(xin)息(xi)、生物(wu)和(he)材料(liao)等学科(ke)交(jiao)叉(cha)融(rong)合(he)的一个(ge)新兴(xing)研究方向,可应(ying)用于(yu)骨科、心脑血(xue)管(guan)、口(kou)腔(qiang)医(yi)学(xue)、皮(pi)肤科(ke)、神经外科、药物筛选以及(ji)药物(wu)控释(shi)等(deng)方(fang)面,具有广阔的(de)应用前景[4-11]。
近年来,随(sui)着科学技(ji)术(shu)的发展,生(sheng)物3D打印(yin)的各(ge)种(zhong)新兴(xing)技术层出不(bu)穷(qiong),按照(zhao)打(da)印原理(li)的不同生(sheng)物(wu)3D打印技(ji)术可(ke)细(xi)分为光(guang)固化生物3D打(da)印(yin)技术、挤出(chu)式(shi)生(sheng)物3D打印(yin)技(ji)术、喷墨式(shi)生物3D打(da)印技(ji)术以及(ji)激(ji)光(guang)直写(xie)式生(sheng)物3D打印(yin)技术[12-14]。
光固(gu)化(hua)生(sheng)物3D打印(yin)技术(shu)是通过(guo)光选(xuan)择(ze)性(xing)交(jiao)联(lian)生物(wu)墨(mo)水使(shi)其固(gu)化的方(fang)式(shi)进(jin)行(xing)打印,根(gen)据(ju)成型(xing)方式的不同分(fen)为(wei)立(li)体(ti)光(guang)刻(ke)(SLA)和数(shu)字(zi)光处(chu)理(DLP)。
本(ben)研究(jiu)主(zhu)要(yao)介(jie)绍(shao)了DLP生(sheng)物3D打(da)印(yin)技(ji)术(shu),并对其应(ying)用进行(xing)综述。
1 、DLP生物3D打印(yin)技(ji)术概(gai)念(nian)
DLP生物(wu) 3D打(da)印(yin)技术是(shi)将影(ying)像信号(hao)经过数字(zi)处理后(hou),经过数字微(wei)镜元件(jian)(DMD)光(guang)投(tou)影出来,完成(cheng)数字信息(xi)显(xian)示的(de)技术(shu),其(qi)打印原理是通过光选择性(xing)交(jiao)联(lian)生(sheng)物墨(mo)水(shui)固化(hua)成型(xing)的方(fang)法进行(xing)打(da)印(yin)。基于(yu)这(zhe)种(zhong)技术开(kai)发了(le)DLP 生物(wu)3D打(da)印技(ji)术。相较于SLA类(lei)型打(da)印(yin)机使用(yong)的点(dian)光源,DLP类型打印机采用(yong)的(de)是(shi)面(mian)光源(yuan),如(ru)图1所示。紫(zi)外光(guang)透过DMD形(xing)成二维(wei)图(tu)案(an),照(zhao)向(xiang)光固化的生物(wu)墨水,具(ju)有(you)特(te)定图(tu)案的(de)紫外光(guang)与溶(rong)解(jie)的(de)自(zi)由(you)基光引发(fa)剂(ji)相(xiang)互作用使(shi)生物墨水固(gu)化(hua)成特(te)定的图(tu)案,然后移动(dong)打(da)印(yin)平(ping)台(tai),在(zai)下(xia)一层重(zhong)复(fu)这(zhe)一过程。这种(zhong)打(da)印(yin)技(ji)术(shu)利(li)用面(mian)光源(yuan)对可见光(guang)交联生(sheng)物(wu)墨(mo)水(shui)进(jin)行(xing)固(gu)化(hua),单(dan)次照射即可成(cheng)型一(yi)个面(mian),而(er)且(qie)仅(jin)需要(yao)一个(ge)轴移(yi)动(dong),设(she)备(bei)结(jie)构(gou)简(jian)单(dan),易(yi)于(yu)控制,打(da)印(yin)速度(du)快(kuai),成(cheng)型精度(du)高(gao)[15-16]。

2 、DLP生(sheng)物3D打印(yin)材料
由于DLP生(sheng)物 3D打印技术(shu)的(de)控制(zhi)原(yuan)理简(jian)单(dan)、使(shi)用的(de)材(cai)料(liao)生(sheng)物(wu)相容(rong)性较(jiao)高、打(da)印条(tiao)件温(wen)和、能够(gou)构(gou)建(jian)复杂(za)的微(wei)小(xiao)组(zu)织结构等原(yuan)因(yin),十(shi)分适(shi)合(he)生物(wu)3D打印(yin)。而这(zhe)一技(ji)术(shu)的(de)应(ying)用(yong)与(yu)发展对打印(yin)材料(liao)也提出(chu)了更高的(de)要求(qiu),不(bu)仅(jin)要(yao)满(man)足光(guang)固(gu)化的(de)要求(qiu),固(gu)化后还要具有(you)一(yi)定的机械强(qiang)度,以(yi)及(ji)能(neng)够(gou)支(zhi)持(chi)细胞(bao)生长(zhang)、增(zeng)殖(zhi)和(he)黏附等(deng)过程(cheng)的生(sheng)理(li)环境,因此(ci)光(guang)固化的生(sheng)物(wu)墨(mo)水(shui)的研发(fa)也十分重要[17-18]。
传统(tong)的光固化打印设备是(shi)利用紫外光(guang)固化(hua)光敏材料,形(xing)成固体(ti)或(huo)凝胶[19]。组(zu)织(zhi)工(gong)程(cheng)上常(chang)用(yong)生(sheng)物(wu)相(xiang)容(rong)性(xing)较好的(de)水凝(ning)胶(jiao)作为打(da)印(yin)材料(liao),主(zhu)要由可(ke)聚(ju)合(he)的(de)低聚物和(he)自由基(ji)光引发剂(ji)组成(cheng)。材料的(de)固(gu)化(hua)过(guo)程主要是(shi)三个步(bu)骤,首先(xian)受到(dao)紫(zi)外光(guang)照(zhao)射(she)形成(cheng)自由基,然后自由基(ji)与(yu)单体的(de)双(shuang)键结合(he)形成(cheng)交联网(wang)络,最后(hou)随(sui)着交联(lian)过(guo)程中(zhong)共价(jia)键(jian)的(de)形(xing)成而终止聚(ju)合(he)过程。自由基光(guang)引发剂是固(gu)化(hua)材(cai)料的(de)重要(yao)组分,受(shou)到光照(zhao)之后(hou)能够(gou)分解(jie)为(wei)自由(you)基或阳离子(zi),而引发聚(ju)合反应[20-22]。常(chang)用的(de)光(guang)固(gu)化生(sheng)物材(cai)料(liao)一(yi)般(ban)分(fen)为天(tian)然生物材(cai)料(liao)、合成(cheng)生物(wu)材(cai)料和复合(he)生(sheng)物(wu)材料。其中(zhong)天(tian)然(ran)生(sheng)物材料有(you)甲基丙烯酸明胶(jiao)(GelMA)、硫(liu)醇(chun)-烯明胶[4]、丝(si)素(su)蛋(dan)白(bai)[23]等(deng)。合成(cheng)生(sheng)物(wu)材料有聚乙二(er)醇二丙(bing)烯酸酯(zhi)(PEGDA)[24]、聚(ju)碳(tan)酸(suan)酯(zhi)丙(bing)烯(xi)酸(suan)酯(zhi)及(ji)其(qi)衍生(sheng)物(wu)[25-27]。一(yi)般(ban)使用(yong)苯基-2, 4, 6-三甲基(ji)苯甲(jia)酰(xian)膦(lin)酸(suan)锂(LAP)、I2959等(deng)作为(wei)光引发(fa)剂(ji)[28]。
3、 DLP生(sheng)物(wu)3D打(da)印(yin)技(ji)术在医(yi)学领域(yu)的应(ying)用(yong)
DLP 生(sheng)物3D打印(yin)技(ji)术(shu)由于其良(liang)好的成(cheng)型性,受到愈(yu)来愈(yu)多的关(guan)注(zhu),在(zai)医学领域具(ju)有(you)广(guang)泛(fan)的(de)应(ying)用(yong)场(chang)景(jing),具体应(ying)用(yong)场(chang)景见表1。

3.1 仿(fang)生牙齿及(ji)牙髓修(xiu)复(fu)
DLP打印(yin)技(ji)术(shu)由(you)于其独(du)特(te)的(de)成型特点(dian),其(qi)精度(du)受(shou)DLP投(tou)影(ying)光(guang)机的(de)分(fen)辨率(lv)、成(cheng)型范(fan)围以(yi)及单次(ci)固(gu)化层(ceng)厚(hou)的(de)影响,投影光机分(fen)辨率(lv)越高(gao)、成(cheng)型范围(wei)越(yue)小(xiao)且(qie)层(ceng)厚越(yue)小打印精度就(jiu)越(yue)高(gao)。因此(ci)DLP打(da)印技(ji)术适合打(da)印高精度的小(xiao)形(xing)物品,在(zai)定(ding)制个性(xing)化牙(ya)科器(qi)械(xie)方面(mian)具(ju)有(you)得天独(du)厚的(de)优(you)势(shi)。多(duo)普(pu)勒(lei)实(shi)验室材(cai)料(liao)科(ke)学与(yu)技(ji)术研(yan)究(jiu)所的(de)Sonja Baumgartner团队[38]提(ti)出了(le)一(yi)种利用DLP打(da)印(yin)技术(shu)制造(zao)仿(fang)生(sheng)牙齿的方(fang)法(fa),经实(shi)验(yan)证明利用该方(fang)法打印(yin)的(de)牙齿可以(yi)满足(zu)医(yi)用修复体(ti)所(suo)需(xu)精(jing)度(du)以及生物(wu)相容(rong)性(xing)。牙髓组(zu)织位(wei)于牙齿(chi)内(nei)部(bu)的(de)牙髓腔内,包括神(shen)经、淋巴、血管(guan)和早(zao)牙(ya)本质(zhi)细胞(bao)等,具有(you)感(gan)觉、保(bao)护(hu)、营养(yang)以(yi)及形成(cheng)牙(ya)本(ben)质(zhi)的能力。由于(yu)牙(ya)髓(sui)组(zu)织(zhi)被(bei)坚(jian)硬(ying)的(de)牙(ya)本(ben)质(zhi)包(bao)裹,没有(you)有(you)效的侧枝(zhi)循(xun)环等(deng),导(dao)致(zhi)牙髓(sui)发(fa)生(sheng)炎(yan)症或受到(dao)损(sun)伤(shang)后难以(yi)恢(hui)复(fu)。
传统(tong)的治疗(liao)方法(fa)是(shi)使(shi)用(yong)根管(guan)治疗,这种(zhong)方式(shi)可(ke)能会(hui)导致牙髓(sui)坏死、牙齿断(duan)裂(lie)等(deng),存在一(yi)定(ding)的(de)风险(xian)。浙江(jiang)大学医学(xue)院(yuan)欧阳(yang)宏(hong)伟(wei)教(jiao)授(shou)团(tuan)队[29]采用DLP打(da)印(yin)技术(shu)构建(jian)搭(da)载间充质干(gan)细胞(hDPSC)的(de)GelMA微球为细(xi)胞提供(gong)有(you)利的增(zeng)殖环(huan)境。hDPSC在(zai)体(ti)内(nei)具(ju)备形(xing)成(cheng)血(xue)管与(yu)神(shen)经(jing)以及(ji)牙本(ben)质(zhi)细胞的(de)能力,可(ke)用(yong)于(yu)构建(jian)组织(zhi)工(gong)程牙髓使牙髓再(zai)生,是治(zhi)疗(liao)牙髓(sui)疾病理(li)想的治(zhi)疗方(fang)法(fa)。因此,DLP生(sheng)物(wu)3D打(da)印(yin)技术(shu)在(zai)定制个性(xing)化(hua)齿(chi)具以(yi)及(ji)制(zhi)造(zao)包裹着(zhe)细胞(bao)的载(zai)细胞(bao)微球方(fang)面(mian)有着(zhe)一定的(de)优(you)势,也(ye)为(wei)治疗牙齿疾(ji)病提(ti)供了(le)理(li)想的(de)治疗方(fang)法(fa)。
3.2 组织(zhi)工(gong)程(cheng)软骨(gu)修(xiu)复和再(zai)生(sheng)
软(ruan)骨缺(que)损(sun)的(de)修(xiu)复在临(lin)床(chuang)治疗(liao)中具有(you)很高的挑(tiao)战性。由(you)于(yu)生物(wu)3D打(da)印(yin)技(ji)术具有(you)优秀(xiu)的个(ge)性化定(ding)制的特点,这(zhe)种技术为(wei)组织工程(cheng)软骨(gu)再(zai)生(sheng)和(he)修(xiu)复(fu)提供了新(xin)思路[39-40]。支(zhi)架(jia)是组(zu)织(zhi)工(gong)程的核心,对软(ruan)骨再(zai)生有(you)着至关重(zhong)要的影响[41]。临床(chuang)上(shang)要(yao)求(qiu),软骨(gu)组(zu)织(zhi)工程(cheng)支架(jia)要(yao)有(you)良(liang)好(hao)的生物(wu)相(xiang)容(rong)性(xing),使(shi)支架(jia)能(neng)够(gou)植入(ru)病(bing)患体(ti)内,细胞能够(gou)在(zai)支架上(shang)生长(zhang)增(zeng)殖(zhi),并(bing)且支架(jia)能(neng)够在(zai)体(ti)内(nei)降解(jie)[42-43],而(er)DLP生(sheng)物(wu)3D打印(yin)技(ji)术使(shi)用的生物(wu)墨(mo)水恰好(hao)满(man)足这(zhe)一特(te)性(xing)[44-45]。四川大(da)学华西医院的苟马(ma)玲及(ji)其团(tuan)队(dui)[30]设计(ji)了一种无创(chuang)的(de)体(ti)内生(sheng)物3D打(da)印方(fang)法。这(zhe)种方法是将(jiang)光(guang)聚(ju)合的(de)生物(wu)墨(mo)水注射(she)到体内(nei),再使用(yong)具有(you)特(te)定图(tu)案的(de)近红外(wai)光(guang)照(zhao)射使其在(zai)体(ti)内(nei)原(yuan)位(wei)固化(hua)成型(xing)。并且利用该(gai)方(fang)法(fa)打印出(chu)了(le)一个可(ke)用(yong)于(yu)软(ruan)骨修(xiu)复的(de)个性化(hua)的耳(er)软(ruan)骨(gu)支(zhi)架。该(gai)研究(jiu)为体(ti)内(nei)原(yuan)位(wei)生物打(da)印(yin)提(ti)供了实(shi)例(li)验(yan)证,为医学生物(wu)3D打(da)印提供(gong)了新(xin)的(de)方(fang)法(fa),推动(dong)了原位微(wei)创打(da)印(yin)的发展(zhan)。
人体(ti)骨组(zu)织(zhi)除(chu)了具有支(zhi)撑、保(bao)护(hu)和运动(dong)的作(zuo)用(yong),还有造(zao)血(xue)及新(xin)陈代谢的作(zuo)用[31]。由(you)于人体的骨(gu)组(zu)织结构(gou)复(fu)杂,传(chuan)统(tong)的支(zhi)具(ju)并(bing)不能(neng)很(hen)好(hao)地(di)代(dai)替(ti)天然骨。理(li)想的情(qing)况是使损伤(shang)部位(wei)再(zai)生或(huo)者制造能够生长增(zeng)殖、具有血运(yun)的(de)仿生(sheng)骨组织结(jie)构(gou)。而(er)通(tong)过3D打(da)印(yin)的(de)方法,模(mo)拟(ni)天然复杂(za)的骨(gu)组织结构(gou)进(jin)行组(zu)织再(zai)生(sheng),也(ye)为(wei)组织(zhi)工程再(zai)生提(ti)供(gong)了(le)一种新(xin)的(de)研究(jiu)方(fang)法(fa)。
陈(chen)清华[46]使用具(ju)有生物(wu)活(huo)性的(de)羟(qiang)基磷灰(hui)石(shi),利用(yong)光(guang)固(gu)化生物(wu)3D打(da)印(yin)技(ji)术(shu)制造(zao)出(chu)复(fu)杂(za)多(duo)孔(kong)仿(fang)生骨修(xiu)复支架,促(cu)进骨(gu)组(zu)织(zhi)修(xiu)复,并恢复(fu)其功(gong)能(neng)。组织工程支架的结(jie)构对(dui)于模(mo)拟天(tian)然(ran)骨组织(zhi)具有重要的(de)意(yi)义(yi),中(zhong)国(guo)科学(xue)院上(shang)海(hai)硅(gui)酸盐(yan)研(yan)究(jiu)所(suo)的吴(wu)成(cheng)铁(tie)教授(shou)团(tuan)队[47]利用(yong)DLP打印(yin)技(ji)术,将生(sheng)物陶瓷材(cai)料制(zhi)成具有(you)复(fu)杂(za)结构(gou)的哈弗斯(si)管(guan)支(zhi)架(jia),如(ru)图(tu)2所(suo)示,支(zhi)架(jia)的(de)抗(kang)压(ya)强度和孔(kong)隙(xi)率(lv)可以(yi)通过(guo)更改(gai)哈(ha)夫(fu)斯(si)结(jie)构(gou)的参数来(lai)控(kong)制(zhi)。并通(tong)过(guo)对其(qi)进(jin)行体(ti)外诱(you)导(dao)成骨、生成血(xue)管(guan)和(he)分化(hua)神经,发(fa)现其(qi)在(zai)体内体外(wai)都有(you)着良好的输(shu)送细(xi)胞(bao)的能力(li),可(ke)以加速(su)成骨(gu)和(he)血(xue)管(guan)再生(sheng),这项研究通(tong)过模拟天(tian)然(ran)复(fu)杂(za)的骨(gu)组织结构(gou)进(jin)行(xing)组织(zhi)再(zai)生,为组织(zhi)工(gong)程(cheng)再生提供(gong)了(le)一种新的(de)研(yan)究(jiu)方(fang)法(fa)。

3.3 神(shen)经(jing)组(zu)织(zhi)修(xiu)复(fu)
神(shen)经组织是(shi)神(shen)经系(xi)统的(de)基本(ben)组成(cheng)部分之(zhi)一(yi),结构及其(qi)功(gong)能都十分复杂,当神(shen)经组织受(shou)到(dao)损(sun)伤后(hou)由(you)于(yu)其微(wei)小且复(fu)杂(za)的(de)结(jie)构,使用传(chuan)统(tong)的(de)治疗方法(fa)难以进行(xing)修复。而光(guang)固化打(da)印(yin)技(ji)术(shu)可(ke)以(yi)制(zhi)造(zao)微(wei)小精密的水(shui)凝胶(jiao)结(jie)构,可以用(yong)来制(zhi)造(zao)用于修(xiu)复(fu)神(shen)经(jing)组(zu)织的(de)神经导(dao)管,为修复神(shen)经(jing)组(zu)织提供了(le)一(yi)种理想的(de)方法(fa)。
近(jin)年(nian)来,使用(yong)3D打(da)印技术制(zhi)造(zao)可降(jiang)解的神(shen)经(jing)组织(zhi)导(dao)管引(yin)导神经(jing)组(zu)织(zhi)修(xiu)复的(de)方法成(cheng)为(wei)热(re)点。由于DLP技术的(de)发展(zhan),可制造(zao)高分(fen)辨率(lv)、高精(jing)度的(de)微小(xiao)水凝胶(jiao)结构(gou),因(yin)此(ci)也(ye)适(shi)用于(yu)神(shen)经(jing)组织(zhi)的修(xiu)复。浙江(jiang)大学医(yi)学(xue)院附(fu)属(shu)儿(er)童(tong)医(yi)院(yuan)叶文(wen)松(song)主(zhu)任(ren)团队[32]研发一(yi)种以(yi)GelMA为打印材料(liao),LAP为(wei)光引(yin)发(fa)剂(ji),通过(guo)DLP技(ji)术用于(yu)打(da)印周(zhou)围神经再(zai)生(sheng)的(de)神经导(dao)管的方法。其(qi)团(tuan)队在(zai)研(yan)究中(zhong)利用(yong)DLP生物打印(yin)技术成(cheng)功制备(bei)了(le)不同内(nei)径(jing)的(de)多(duo)通道神经导(dao)管支架,并(bing)通过(guo)体外培(pei)养实验(yan)证明(ming),神经细(xi)胞(bao)可以沿神经导管存(cun)活(huo)、增(zeng)殖和迁移,神(shen)经(jing)导管具(ju)有(you)良(liang)好的(de)生(sheng)物(wu)相容性(xing)而(er)且可以引(yin)导周(zhou)围(wei)神经修复(fu),在神(shen)经组织再(zai)生(sheng)方(fang)面(mian)具(ju)有(you)巨大的(de)潜力。脊(ji)柱骨(gu)折或(huo)锥(zhui)体错位会导(dao)致(zhi)脊髓(sui)或神经压(ya)迫和(he)挫伤,难(nan)以(yi)完(wan)全(quan)治愈。美(mei)国加州大(da)学神(shen)经(jing)科(ke)学(xue)教授(shou)Mark Tuszynski和(he)纳(na)米工程(cheng)系(xi)陈绍(shao)琛教(jiao)授团队合作(zuo)[48],利用(yong)一(yi)种(zhong)微型(xing)连(lian)续投影(ying)光(guang)固(gu)化(hua)打(da)印的方法制(zhi)造复(fu)杂的(de)中(zhong)枢神(shen)经(jing)系(xi)统(tong)结构(gou),促进损伤(shang)的神(shen)经(jing)组织修(xiu)复(fu)。并(bing)在研(yan)究中(zhong)将(jiang)支架(jia)植(zhi)入(ru)大(da)鼠脊髓(sui)损伤的(de)位(wei)置(zhi),几(ji)个(ge)月后(hou)大(da)鼠(shu)损伤(shang)的(de)脊髓组织(zhi)被(bei)修复,且运动能力恢(hui)复。
3.4 药物(wu)控(kong)释
DLP 生(sheng)物3D打印(yin)技术(shu)能够制造(zao)具(ju)有独特结(jie)构的(de)产(chan)品(pin),可用于个(ge)性(xing)化(hua)植入(ru),在(zai)个性化医疗领(ling)域是一种很有前(qian)途(tu)的技术(shu),应(ying)用前景十(shi)分广(guang)阔。近些年(nian)来(lai),DLP技(ji)术(shu)在(zai)药物控释(shi)方面(mian)也有一定的(de)进(jin)展(zhan)。贝(bei)尔(er)格莱德(de)大(da)学(xue)药学(xue)院(yuan)Mirjana Krkobabić教授团(tuan)队[33]以扑热(re)息(xi)痛(对乙(yi)酰(xian)氨基(ji)酚)为模形药物,PEGDA为(wei)光(guang)聚合物,二苯基(2,4,6-三甲(jia)基苯(ben)甲酰(xian)基)氧化(hua)膦为光引发剂,利用DLP技(ji)术(shu)制(zhi)备口服(fu)药(yao)物(wu)固(gu)体(ti)制(zhi)剂,在(zai)其(qi)中加入(ru)合适的(de)造(zao)孔(kong)剂打(da)印药(yao)物释(shi)放(fang)效(xiao)率(lv)可(ke)控(kong)的(de)扑热息痛(tong)片(pian)和茶(cha)碱(jian)控(kong)释(shi)片(pian)。浙(zhe)江(jiang)工(gong)业大学杨根(gen)生(sheng)教授及其团队[34]使用PEGDA为光(guang)聚(ju)合(he)物,二苯基(2,4,6-三甲基苯甲(jia)酰基(ji))氧化(hua)膦(lin)为光(guang)引(yin)发剂,利(li)用(yong)DLP技术(shu)制(zhi)造(zao)了(le)可(ke)用(yong)于药(yao)物传(chuan)递(di)和控(kong)释(shi)的内(nei)植物(wu)。
生(sheng)长因(yin)子(zi)在(zai)组(zu)织(zhi)再生(sheng)过程(cheng)中有着十(shi)分关(guan)键(jian)的(de)作(zuo)用(yong),调(diao)节(jie)生(sheng)长因(yin)子(zi)的(de)释放(fang)与传(chuan)递速(su)率可(ke)以加快组织(zhi)工程再生。加州(zhou)大学圣迭(die)戈分校(xiao)的(de)陈绍琛教授(shou)团队(dui)[49]提(ti)出(chu)了一(yi)种利用(yong)DLP 生(sheng)物3D打印技(ji)术制备(bei)出有(you)着独(du)特(te)结构的水(shui)凝(ning)胶(jiao),从(cong)而(er)控制水凝胶中(zhong)生(sheng)长因(yin)子释放速率(lv)的(de)方法(fa),验证(zheng)了优(you)先释(shi)放(fang)指定(ding)生(sheng)长因(yin)子的可能(neng)性(xing)。将(jiang)药物(wu)制(zhi)造(zao)成(cheng)特(te)殊结(jie)构的固(gu)体制(zhi)剂(ji)可(ke)以控制(zhi)药(yao)物靶(ba)向定量释放(fang),而光(guang)固(gu)化(hua)技术(shu)在(zai)制造微(wei)小的精密结构(gou)方面(mian)具(ju)有(you)一定(ding)优(you)势(shi)。因(yin)此,可(ke)以(yi)利(li)用这种技术制(zhi)造药(yao)物控(kong)释片。
3.5 仿生皮(pi)肤
皮(pi)肤是(shi)人(ren)体(ti)最(zui)大(da)的器(qi)官,容易(yi)损(sun)伤(shang),造成(cheng)感(gan)染(ran)[50]。由(you)于(yu)皮肤自(zi)我(wo)修(xiu)复(fu)能力(li)有限,当(dang)其(qi)受(shou)到(dao)严重(zhong)损(sun)伤(shang)时(shi),难(nan)以(yi)完全(quan)愈(yu)合。因(yin)此(ci)当皮(pi)肤受到严重损(sun)伤时需要供(gong)体皮(pi)肤(fu)移(yi)植治(zhi)疗(liao)。但(dan)是,由(you)于(yu)供(gong)体(ti)皮(pi)肤(fu)来源有限,且(qie)异体移植(zhi)可(ke)能(neng)会造(zao)成(cheng)排(pai)异或感染,因(yin)此,利(li)用(yong)3D打印技术(shu)制(zhi)造(zao)仿生皮肤(fu)有(you)着广阔(kuo)的(de)前景(jing),DLP技(ji)术(shu)由于其(qi)面成型(xing)的原理,比较(jiao)适(shi)合(he)皮肤打印[51]。
浙(zhe)江(jiang)大(da)学医(yi)学院欧阳(yang)宏(hong)伟(wei)教(jiao)授团(tuan)队(dui)[35]提出(chu)了一(yi)种利(li)用(yong)仿(fang)生生物墨(mo)水和(he)DLP 生物(wu)3D打(da)印(yin)技(ji)术打(da)印(yin)仿(fang)生活性(xing)皮(pi)肤(fu)的(de)新方(fang)法(fa),团队(dui)使(shi)用(yong)GelMA与丁酰(xian)胺(an)交(jiao)联的(de)透(tou)明质酸(suan),并(bing)以LAP为(wei)光(guang)引(yin)发剂(ji),组成(cheng)凝(ning)胶(jiao)生(sheng)物墨(mo)水(shui),并(bing)通过(guo)DLP打(da)印技(ji)术(shu)制(zhi)造了仿(fang)生皮(pi)肤(fu),并在(zai)体内(nei)实(shi)验中证明该方法制造(zao)的(de)活性(xing)皮肤具有皮(pi)肤的功(gong)能,而(er)且可以(yi)促进(jin)真皮(pi)再生(sheng)和血管形(xing)成(cheng)。光(guang)固(gu)化(hua)生(sheng)物(wu)3D打印(yin)技(ji)术在(zai)制造仿生皮(pi)肤(fu)方(fang)面有着一(yi)定的优(you)势(shi)。而(er)现阶(jie)段这(zhe)项(xiang)技(ji)术的(de)关(guan)键(jian)除(chu)了(le)打印设(she)备(bei),更重(zhong)要(yao)的是所使用的(de)生(sheng)物材(cai)料(liao),不仅具(ju)有良(liang)好(hao)的(de)生物相容(rong)性,而(er)且(qie)能够(gou)促(cu)进细(xi)胞在人(ren)体(ti)裸漏(lou)的(de)皮(pi)肤表(biao)面(mian)生(sheng)长增殖,最后(hou)能(neng)够分解(jie)或被人体(ti)吸(xi)收(shou)。
3.6 气(qi)管(guan)支(zhi)架
气(qi)管的病变(bian)会引起(qi)人(ren)体呼(hu)吸(xi)系统(tong)疾病,造成(cheng)呼(hu)吸(xi)困难,严重(zhong)可危(wei)及生命。当(dang)气管(guan)发生(sheng)堵塞时(shi)一(yi)般采用植(zhi)入气(qi)道支架(jia)的(de)治(zhi)疗(liao)方法。传统(tong)的气(qi)道支架是硅胶管,植入(ru)和移(yi)除(chu)比(bi)较(jiao)困(kun)难,可(ke)能(neng)会对(dui)人体(ti)内(nei)其他组织(zhi)造成(cheng)损伤[52-53]。因(yin)此(ci),利(li)用生(sheng)物3D打印(yin)技(ji)术(shu)制(zhi)造(zao)的(de)可(ke)降解生物(wu)支架(jia)应运而生[54]。而(er)DLP技术(shu)由于(yu)其打印模型精(jing)度更(geng)高、尺寸更(geng)小(xiao),苏(su)黎世联邦(bang)理工学(xue)院的(de)Nevena Paunović等(deng)[36]提出(chu)了一种(zhong)利用(yong)DLP生物(wu)3D打(da)印(yin)技(ji)术(shu)制(zhi)造(zao)双(shuang)聚(ju)合(he)物生(sheng)物(wu)支架的(de)方(fang)法(fa),并(bing)利用(yong)该方法(fa)制造(zao)了(le)支(zhi)架(jia),研究发(fa)现该(gai)支(zhi)架(jia)具(ju)有可(ke)调的弹(dan)性(xing)性(xing)能、适当(dang)的生(sheng)物降(jiang)解性和良好(hao)的(de)生(sheng)物(wu)相(xiang)容(rong)性。韩(han)国翰林大(da)学医学(xue)院的(de)Chan Hum Park团(tuan)队[55]首次(ci)合成了甲(jia)基丙烯(xi)酸(suan)缩水(shui)甘油酯(zhi)改(gai)性(xing)丝(si)素蛋白(Silk-GMA)用(yong)于(yu)光(guang)固化生物打印(yin),研究发现这种材料具有良好的(de)光(guang)固化打印(yin)能力、成(cheng)软(ruan)骨能(neng)力以及软(ruan)骨(gu)所需(xu)要的力(li)学性能。研究人员(yuan)展(zhan)示(shi)了(le)将(jiang)含(han)有(you)兔软(ruan)骨(gu)细胞的Silk-GMA水(shui)凝(ning)胶打印(yin)的人工(gong)气(qi)管(guan)植(zhi)入气(qi)管(guan)缺损(sun)的兔体内的(de)实(shi)验,结(jie)果(guo)表明(ming)凝胶(jiao)支架(jia)能够(gou)替(ti)代(dai)气(qi)管的(de)缺(que)损部(bu)分使气(qi)管(guan)再生(sheng)[56]。浙(zhe)江大学(xue)机(ji)械工(gong)程学院的姚鑫(xin)骅团(tuan)队(dui)[57]提出(chu)了利(li)用DLP生物(wu)3D打印技(ji)术(shu),制(zhi)备(bei)一(yi)种(zhong)带有(you)纤毛上(shang)皮(pi)的(de)柔(rou)性多(duo)孔(kong)手性(xing)气管(guan)支架(jia),以(yi)减少(shao)气管(guan)支架植入带(dai)来的并发(fa)症。该支架(jia)与(yu)普(pu)通(tong)硅胶支架相比(bi)具有(you)更好(hao)的(de)抗(kang)移性(xing)和通气性,内壁(bi)上的(de)纤(xian)毛(mao)上皮(pi)也可(ke)以(yi)防止黏液堵(du)塞(sai)。北(bei)京航空航(hang)天(tian)大学(xue)樊(fan)瑜波(bo)教授等[58]利(li)用(yong)DLP技术制造了(le)丙(bing)烯酸(suan)酯(zhi)材(cai)料的气管(guan)支架(jia)并用鱼(yu)鳞(lin)胶原(yuan)蛋(dan)白将其(qi)表面进(jin)行(xing)改性,提高(gao)了气(qi)管(guan)支架的生物(wu)相容性。并通过(guo)水接触角实(shi)验(yan)和细(xi)胞培养(yang)证明(ming)了(le)该(gai)复合气管支架(jia)的生物(wu)相容(rong)性良(liang)好。
3.7 肿瘤治疗(liao)
肿瘤(liu)是(shi)一个(ge)具(ju)有(you)多种细胞类(lei)型的(de)复杂生(sheng)态系(xi)统(tong),是包含(han)多种(zhong)细胞类型(xing)以(yi)及(ji)相互作用(yong)的(de)复杂(za)组(zu)织。目前(qian),大(da)多数癌症的药物筛(shai)选(xuan)都(dou)是使用2D培(pei)养肿(zhong)瘤细胞(bao)和(he)动(dong)物(wu)模(mo)型(xing)进(jin)行(xing)评估(gu),这种(zhong)模(mo)型(xing)的(de)反(fan)应(ying)与(yu)人的反应并(bing)不(bu)匹(pi)配(pei)[59]。而(er)利(li)用(yong)光固化(hua)生物3D打印(yin)的(de)方法构(gou)建(jian)仿生组织模形相(xiang)较于传(chuan)统的2D培养(yang)可(ke)以(yi)更(geng)明(ming)显的展(zhan)示(shi)出肿瘤(liu)的(de)生长(zhang)增(zeng)殖情(qing)况(kuang)、药物作(zuo)用机(ji)理以及(ji)免(mian)疫相(xiang)互作用(yong)等,为(wei)未来(lai)癌症(zheng)治(zhi)疗提供了(le)新思(si)路[60]。DLP技(ji)术相较于(yu)其(qi)他种类的打(da)印方式(shi)精度更高(gao)、可(ke)打印结(jie)构(gou)更复杂(za),因此适合打(da)印细胞瘤这种(zhong)复杂(za)结(jie)构(gou)。Jeremy N. Rich等[37]利用(yong)DLP 生物3D打(da)印和可见(jian)光(guang)交(jiao)联(lian)的(de)天(tian)然细(xi)胞外基(ji)质(zhi)衍(yan)生(sheng)物(wu)构建(jian)了(le)胶质(zhi)母细胞(bao)瘤的3D仿生微(wei)环境(jing)。这有(you)助(zhu)于(yu)人(ren)们研究肿(zhong)瘤(liu)与(yu)免(mian)疫(yi)的相互作用,寻找治(zhi)疗方法。也(ye)可(ke)用于(yu)高(gao)通量的药物(wu)筛选(xuan)工作(zuo),推动(dong)了肿瘤治疗(liao)的发(fa)展,为(wei)攻(gong)克肿瘤(liu)这一(yi)难题(ti)开拓了(le)视(shi)野(ye)。
4 、结(jie)语与(yu)展望(wang)
生(sheng)物3D打印(yin)技术(shu)是(shi)传统增(zeng)材(cai)制造(zao)与(yu)生(sheng)物(wu)医(yi)学相(xiang)结合(he)的新(xin)兴技术,是传(chuan)统制造行业(ye)转(zhuan)向高(gao)端制(zhi)造领(ling)域(yu)的(de)标(biao)志(zhi)性技(ji)术,是多学(xue)科交叉(cha)融(rong)合的新(xin)兴(xing)研(yan)究(jiu)方向(xiang),可(ke)用(yong)于制造(zao)新形植(zhi)入物、仿生器(qi)官(guan)以(yi)及病理模型等(deng),对(dui)于传统(tong)制(zhi)造(zao)行(xing)业(ye)和生(sheng)物医疗(liao)都是(shi)一(yi)场(chang)新的(de)变(bian)革(ge)。本文(wen)着重讨(tao)论了DLP生物3D打印技术研究(jiu)现状(zhuang),并(bing)综(zong)述了(le)其在(zai)仿(fang)生牙(ya)齿、软骨(gu)再(zai)生、神(shen)经(jing)组织修(xiu)复(fu)、药(yao)物控(kong)释(shi)、仿生皮肤(fu)、气管支(zhi)架、肿(zhong)瘤治(zhi)疗等方面的应用(yong)。这(zhe)种(zhong)技(ji)术由于(yu)其良(liang)好的生物(wu)相(xiang)容性且(qie)打(da)印(yin)均(jun)匀、精度高、速度快,为(wei)组(zu)织(zhi)工程(cheng)修(xiu)复(fu)和再生(sheng)方(fang)面提(ti)供了(le)新的研(yan)究思路,为新(xin)型生(sheng)物制造技术的(de)发展(zhan)开(kai)辟了新(xin)的(de)道路(lu)。但本(ben)文仅(jin)宽(kuan)泛(fan)的(de)讨(tao)论了DLP生(sheng)物(wu)3D打印技(ji)术(shu)在医(yi)学(xue)领(ling)域(yu)的(de)应(ying)用情况,对(dui)于(yu)光源设(she)计、设(she)备结构设计和(he)材(cai)料(liao)具体性(xing)质(zhi)等(deng)情(qing)况未进(jin)行(xing)针(zhen)对性(xing)介绍(shao)。
尽管DLP生(sheng)物(wu)3D打印(yin)技术(shu)发(fa)展(zhan)迅速,已(yi)经(jing)能够(gou)制造(zao)出高(gao)度仿(fang)生,具(ju)有(you)生物(wu)活(huo)性的(de)组(zu)织(zhi)结构,但(dan)是大部分的(de)研(yan)究(jiu)都处于实验室的动物(wu)实验身(shen)上,真(zhen)正可用(yong)于(yu)移植的人(ren)体器(qi)官并应用(yong)于(yu)临床仍面(mian)临巨(ju)大(da)的(de)挑(tiao)战。目前(qian)这种(zhong)技(ji)术(shu)所使用的(de)打(da)印(yin)材料主(zhu)要(yao)聚(ju)焦于生(sheng)物(wu)凝胶(jiao),用于制造具(ju)有功能性(xing)的组织。然而,诱(you)导植入(ru)物分化为功能性组织(zhi)仍(reng)然(ran)存(cun)在(zai)一定(ding)瓶颈。此(ci)外,对(dui)于生物3D打印的(de)标准(zhun)体(ti)系(xi)仍(reng)然(ran)不(bu)健全(quan),而(er)且医疗准入(ru)制度的(de)门(men)槛也比较高。这(zhe)些原(yuan)因也(ye)限制了(le)生物(wu)3D打印技术应用(yong)于(yu)临(lin)床(chuang)。因此,要想这项技(ji)术在(zai)医(yi)学领域(yu)大(da)放(fang)异(yi)彩(cai),不仅需(xu)要开发(fa)具有良(liang)好(hao)生(sheng)物相容(rong)性、可降(jiang)解(jie)性、生物力学(xue)性能(neng)的(de)材料,也要建(jian)立更(geng)加完善(shan)、更(geng)加健(jian)全(quan)的标(biao)准体系和(he)监管措(cuo)施。
参考文(wen)献
[1]贺(he)永(yong), 高(gao)庆(qing), 刘(liu)安, 等(deng). 生(sheng)物3D打(da)印(yin)——从(cong)形似到神似[J]. 浙(zhe)江(jiang)大(da)学(xue)学(xue)报(bao):工(gong)学(xue)版(ban), 2019, 53(3): 6-18.
HE Yong, GAO Qing, LIU An, et al. 3D Bioprinting:from Structure to Function [J]. Journal of Zhejiang University (Engineering Science), 2019, 53(3): 6-18.
[2]CARLOS M, SANDRA C, B B M, et al. Bioprinting:from Tissue and Organ Development to in Vitro Models [J]. Chemical Reviews, 2020, 120(19):10547-10607.
[3]CHUN H J, REIS R L, MOTTA A, et al. Biomimicked Biomaterials [M]. Springer, Singapore, 2020, DOI:10.1007/978-981-15-3262-7.
[4]YU C, MILLER K L, SCHIMELMAN J, et al.A Sequential 3D Bioprinting and Orthogonal Bioconjugation Approach for Precision Tissue Engineering [J]. Biomaterials, 2020: 120294.
[5]OZBOLAT I, YU Y. Bioprinting toward Organ Fabrication: Challenges and Future Trends [J]. IEEE Transactions on Biomedical Engineering, 2013, 60(3):691-699.
[6]MAGIN C M, ALGE D L, ANSETH K S. Bio-inspired 3D Microenvironments: A New Dimension in Tissue Engineering [J]. Biomedical Materials, 2016, 11(2):022001.
[7]GU Z, FU J, LIN H, et al. Development of 3D Bioprinting: from Printing Methods to Biomedical Applications [J]. Asian Journal of Pharmaceutical Sciences, 2020, 15(5): 529-557.
[8]ANDREW C D, PRENDERGAST M E, ALXE J H, et al. Bioprinting for the Biologist [J]. Cell, 2021, 184(1):18-32.
[9]胡(hu)堃(kun), 危岩, 李路(lu)海, 等(deng). 3D打印技(ji)术在生(sheng)物(wu)医(yi)用材料领域(yu)的应(ying)用(yong)[J]. 新(xin)材料产业, 2014, (8): 33-39.
HU Kun, WEI Yen, LI Lu-hai, et al. Application of 3D Printing Technology in Biomedical Materials [J].Advanced Materials Industry, 2014, (8): 33-39.
[10] 王维(wei)治, 宫玲(ling), 李(li)文(wen)玉, 等. 3D打印技术(shu)在(zai)医学领(ling)域的应用[J]. 中国(guo)社(she)区(qu)医(yi)师, 2018, 34(29): 16-18.
WANG Wei-zhi, GONG Ling, LI Wen-yu, et al.Application of 3D Printing Technology in Medical Field [J]. Chinese Community Doctors, 2018, 34(29): 16-18.
[11] 张亮, 邱(qiu)宏(hong). 3D打印技(ji)术(shu)在(zai)医(yi)学领域的应用(yong)[J]. 中(zhong)国医(yi)学装(zhuang)备(bei), 2018, 15(6): 154-157.
ZHANG Liang, QIU Hong. The Application of 3D Printing Technique on the Medical Field [J]. China Medical Equipment, 2018, 15(6): 154-157.
[12] RAMAN R, BASHIR R. Stereolithographic 3D Bioprinting for Biomedical Applications [M]. Essentials of 3D Biofabrication and Translation, 2015: 89-121.
[13] WANG Z J, ABDULLA R, PARKER B, et al. A Simple and High-Resolution Stereolithography-Based 3D Bioprinting System Using Visible Light Crosslinkable Bioinks [J]. Biofabrication, 2015, 7(4): 045009.
[14] PENG Z, HAOXUAN W, PENG W, et al. Lightweight 3D Bioprinting with Point by Point Photocuring [J].Bioactive Materials, 2021, 6(5): 1402-1412.
[15] YUAN S, KANG Y, JING N, et al. Modeling the Printability of Photocuring and Strength Adjustable Hydrogel Bioink during Projection-based 3D Bioprinting [J]. Biofabrication, 2021, 13(3): 035032.
[16] BERNAL P N, DELROT P, LOTERIE D, et al.Volumetric Bioprinting of Complex Living-Tissue Constructs within Seconds [J]. Advanced Materials, 2019, 31(42): 1904209.
[17] XU H, CASILLAS J, KRISHNAMOORTHY S, et al.Effects of Irgacure 2959 and Lithium Phenyl-2,4,6-trimethylbenzoylphosphinate on Cell Viability, Physical
Properties, and Microstructure in 3D Bioprinting of Vascular-Like Constructs [J]. Biomedical Materials, 2020, 15(5): 55012-55021.
[18] HE Y, YANG F F, ZHAO H M, et al. Research on the Printability of Hydrogels in 3D Bioprinting [J].Scientific Reports, 2016, 6(6): 29977.
[19] ZHAO Y, TAO X, LI X, et al. Novel Self‐Initiating UV‐Curable Acrylate Monomers [J]. Journal of Applied Polymer Science, 2020, 137(44): 49356.
[20] NIE J, FU J, HE Y. Hydrogels: The Next Generation Body Materials for Microfluidic Chips? [J]. Small,2020, 16(46): 2003797.
[21] BEDELL M L, NAVARA A M, DU Y Y, et al. Polymeric Systems for Bioprinting [J]. Chemical Reviews, 2020,120(19): 10744-10792.
[22] XUAN L, JIE T, JINLU L, et al. 3D Printing Enabled Customization of Functional Microgels [J]. ACS Applied Materials & Interfaces, 2019, 11(13): 12209- 12215.
[23] KIM S H, YEON Y K, LEE J M, et al. Precisely Printable and Biocompatible Silk Fibroin Bioink for Digital Light Processing 3D Printing [J]. Nature Communications, 2018, 9(1): 1620.
[24] MAU R, NAZIR J, JOHN S, et al. Preliminary Study on 3D Printing of PEGDA Hydrogels for Frontal Sinus Implants Using Digital Light Processing (DLP) [J]. Current Directions in Biomedical Engineering, 2019,5(1): 249-252.
[25] WANG P, BERRY D, SONG Z, et al. 3D Printing of a Biocompatible Double Network Elastomer with Digital Control of Mechanical Properties [J]. Advanced Functional Materials, 2020: 1910391.
[26] HUANG X, ZHANG Y, LI F, et al. Highly Efficient Alginate‐Based Macromolecular Photoinitiator for Crosslinking and Toughening Gelatin Hydrogels [J].Journal of Polymer Science, 2020, 58(10): 1439-1449.
[27] BAUMGARTNER S, GMEINER R, SCHÖNHERR J A, et al. Stereolithography-Based Additive Manufacturing of Lithium Disilicate Glass Ceramic for Dental Applications [J]. Materials Science &Engineering C, 2020, 116: 111180.
[28] XU H, CASILLAS J, KRISHNAMOORTHY S, et al. Effects of Irgacure 2959 and Lithium Phenyl-2,4,6-Trimethylbenzoylphosphinate on Cell Viability, Physical Properties, and Microstructure in 3DBioprinting of Vascular-Like Constructs [J]. Biomedical Materials, 2020, 15(5): 55012-55021.
[29] 龚佳(jia)幸. 基(ji)于DLP打印(yin)技(ji)术(shu)的组织(zhi)工程(cheng)牙髓重(zhong)建及其(qi)生物(wu)学(xue)性(xing)能(neng)评估(gu)[D]. 杭州(zhou): 浙江大学, 2020.
GONG Jia-xing. Tissue Engineered Endodontic Reconstruction Based on DLP Printing Technology and Biological Performance Evaluation [D]. Hangzhou:Zhejiang University, 2020.
[30] CHEN Y, ZHANG J, LIU X, et al. Noninvasive in Vivo 3D Bioprinting [J]. Science Advances, 2020, 6(23): a7406.
[31] KAI L, FANGYUAN Z, DAZHI W, et al. Silkworm-Inspired Electrohydrodynamic Jet 3D Printing of Composite Scaffold with Ordered Cell Scale Fibers for Bone Tissue Engineering [J]. International Journal of Biological Macromolecules, 2021, 172: 124-132.
[32] YE W, LI H, YU K, et al. 3D Printing of Gelatin Methacrylate-Based Nerve Guidance Conduits with Multiple Channels [J]. Materials & Design, 2020, 192: 108757.
[33] KRKOBABIĆ M, MEDAREVIĆ D, CVIJIĆ S, et al.Hydrophilic Excipients in Digital Light Processing (DLP) Printing of Sustained Release Tablets: Impact on Internal Structure and Drug Dissolution Rate [J].International Journal of Pharmaceutics, 2019, 572:118790.
[34] YANG Y, ZHOU Y J, LIN X, et al. Printability of External and Internal Structures Based on Digital Light Processing 3D Printing Technique [J]. Pharmaceutics,2020, 12(3): 207-223.
[35] ZHOU F, YI H, LIANG R, et al. Rapid Printing of Bio-inspired 3D Tissue Constructs for Skin Regeneration [J].Biomaterials, 2020, 258: 120287.
[36] PAUNOVI N, BAO Y, COULTER F B, et al. Digital Light 3D Printing of Customized Bioresorbable Airway Stents with Elastomeric Properties [J]. Science Advances, 2021, 7(6): e9499.
[37] MIN T, QI X, C G R, et al. Three-Dimensional Bioprinted Glioblastoma Microenvironments Model Cellular Dependencies and Immune Interactions [J]. Cell Research, 2020, 30(10): 833-853.
[38] BAUMGARTNER S, GMEINER R, SCHNHERR J A,et al. Stereolithography-Based Additive Manufacturing of Lithium Disilicate Glass Ceramic for Dental Applications [J]. Materials Science and Engineering C,2020, 116: 111180.
[39] SHAO H, KE X, LIU A, et al. Bone Regeneration in 3D Printing Bioactive Ceramic Scaffolds with Improved Tissue/Material Interface Pore Architecture in Thin-Wall Bone Defect [J]. Biofabrication, 2017, 9(2): 025003.
[40] 胡堃(kun), 王坤兰(lan), 崔玉(yu)珠(zhu), 等(deng). 3D打印矿(kuang)化胶(jiao)原(yuan)基骨(gu)修(xiu)复体降(jiang)解及(ji)其(qi)生(sheng)物(wu)学性(xing)能研究(jiu)[J]. 数字印刷(shua), 2021, (3):147-157.
HU Kun, WANG Kun-lan, CUI Yu-zhu, et al. Study on the Degradation and Biological Properties of 3D Printing Mineralized Collagen-Based Bone Repair Materials [J]. Digital Printing, 2021, (3): 147-157.
[41] 胡堃, 王(wang)峻(jun)东(dong), 杨(yang)桂(gui)娟, 等(deng). 3D打(da)印智能仿生(sheng)材料(liao)研究进展(zhan)[J]. 数字(zi)印刷(shua), 2020, (5): 1-15.
HU Kun, WANG Jun-dong, YANG Gui-juan, et al. Research Progress of 3D Printing Smart Bionic Materials [J]. Digital Printing, 2020, (5): 1-15.
[42] XIN S, TING W, SHU G. Applications of 3D Printed Bone Tissue Engineering Scaffolds in the Stem Cell Field [J]. Regenerative Therapy, 2021, 16: 63-72.
[43] XIA H, ZHAO D, ZHU H, et al. Lyophilized Scaffolds Fabricated from 3D-Printed Photocurable Natural Hydrogel for Cartilage Regeneration [J]. ACS Applied Materials & Interfaces, 2018, 10(37): 31704-31715.
[44] QIAO U, LIU X, ZHOU X, et al. Gelatin Templated Polypeptide Co-Cross-Linked Hydrogel for Bone Regeneration [J]. Advanced Healthcare Materials, 2020, 9(1): e1901239.
[45] 胡苗苗, 胡(hu)堃, 崔(cui)玉珠(zhu), 等(deng). 3D打(da)印(yin)温敏(min)性(xing)透明质(zhi)酸(suan)基水凝(ning)胶(jiao)研究[J]. 数(shu)字(zi)印刷, 2019, (6): 72-76.
HU Miao-miao, HU Kun, CUI Yu-zhu, et al.Preparation and Study of 3D Printing Thermosensitive Hyaluronic Acid-Based Hydrogels [J]. Digital Printing, 2019, (6): 72-76.
[46] 陈清(qing)华(hua). 基于光固(gu)化(hua)3D打印(yin)的颅骨植入物制(zhi)备及其(qi)生(sheng)物(wu)活(huo)性(xing)研究(jiu)[D]. 济(ji)南(nan): 山(shan)东大学, 2020.
CHEN Qing-hua. Preparation and Bioactivity of Skull Implants Based on Stereolithography [D]. Jinan:Shandong University, 2020.
[47] ZHANG M, LIN R, WANG X, et al. 3D Printing of Haversian Bone–Mimicking Scaffolds for Multicellular Delivery in Bone Regeneration [J]. Science Advances, 2020, 6(12): eaaz6725.
[48] KOFFLER J, ZHU W, QU X, et al. Biomimetic3D-Printed Scaffolds for Spinal Cord Injury Repair [J].Nature Medicine, 2019, 25(2): 263-269.
[49] WANG P, BERRY D, MORAN A, et al. Controlled Growth Factor Release in 3D‐Printed Hydrogels [J].Advanced Healthcare Materials, 2020, 9(15): 1900977.
[50] LING Z, CHUNMEI L, YIMEI L, et al. Diverse Treatments for Deep Burn Wounds: A Case Report [J].Advances in Skin & Wound Care, 2021, 34(4): 1-6.
[51] SI X, XIANZHU Z, PING L, et al. A Gelatin-Sulfonated Silk Composite Scaffold Based on 3D Printing Technology Enhances Skin Regeneration by Stimulating Epidermal Growth and Dermal Neovascularization [J].Scientific Reports, 2017, 7: 1-12.
[52] YING W, JINMING X, QI W, et al. Clinical Comparison of Airway Stent Placement in Intervention Room and Operating Room [J]. Chinese Journal of Lung Cancer, 2020, 23(6): 451-459.
[53] SAHU S, MADAN K, MOHAN A, et al. Obstructive Fibrinous Tracheal Pseudomembrane Following Tracheal Stent Placement: An under Recognized Entity[J]. Lung India, 2020, 37(5): 529-530.
[54] MELGOZA E L, VALLICROSA G, SERENÓ L,et al. Rapid Tooling Using 3D Printing System for Manufacturing of Customized Tracheal Stent [J]. Rapid Prototyping Journal, 2014, 20(1): 1355-2546.
[55] HEE K S, KYU Y Y, MIN L J, et al. Precisely Printable and Biocompatible Silk Fibroin Bioink for Digital Light Processing 3D Printing [J]. Nature Communications,2018, 9(1): 1-14.
[56] KIM S H, SEO Y B, YEON Y K, et al. 4D-Bioprinted Silk Hydrogels for Tissue Engineering [J]. Biomaterials,2020, 260: 120281.
[57] LIU J, YAO X, WANG Z, et al. A Flexible Porous Chiral Auxetic Tracheal Stent with Ciliated Epithelium [J]. Acta Biomaterialia, 2021, 124(1): 153-165.
[58] ZHOU G, HAN Q Y, TAI J, et al. Digital Light Procession Three-Dimensional Printing Acrylate/Collagen Composite Airway Stent for Tracheomalacia[J]. Journal of Bioactive and Compatible Polymers,2017, 32(4): 429-442.
[59] M O N E T R L , J E N N I F E R M . M o d u l a t i n gMicroenvironments for Treating Glioblastoma [J].Current Tissue Microenvironment Reports, DOI:10.1007/s43152-020-00010-z.
[60] PANG Y, MAO S S, YAO R, et al. TGF-β Induced Epithelial-Mesenchymal Transition in an Advanced Cervical Tumor Model by 3D Printing [J].Biofabrication, 2018, 10(4): 044102.
主要(yao)作(zuo)者(zhe)
王(wang)赞(zan)(1978年(nian)-), 博士(shi),副(fu)教授;主(zhu)要(yao)研(yan)究(jiu)方向为(wei)生(sheng)物3D打(da)印、智能制造。
WANG Zan, born in 1978. He got the doctor degree and now is an assistant professor. His main research interests are bioprinting and intelligent manufacturing.
王(wang)金武(wu)(1971年-),博士(shi),教(jiao)授,主(zhu)任医师(shi);主(zhu)要研究方(fang)向(xiang)为3D打印(yin)康(kang)复辅具与骨关(guan)节内(nei)植(zhi)物(wu)3D打印的(de)临床(chuang)转化,通(tong)过显(xian)微外(wai)科(ke)和(he)定(ding)制(zhi)式(shi)人工关(guan)节技术(shu)进(jin)行(xing)肩关(guan)节(jie)肿瘤的保肢(zhi)治(zhi)疗。
WANG Jin-wu, born in 1971. He got the doctor degree and now is a professor and chief physician. His research directions are clinical transformation of 3D printing rehabilitation aids and bioprinting of bone and joint plants, and limb salvage treatment of shoulder joint tumors through microsurgery and customized artificial joint technology.
无相关信息(xi)

kzjsbc.com
凯(kai)泽金(jin)属手(shou)机(ji)网