‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁠⁠‌‍
‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢⁠⁠‍
⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢‍‌⁣‍⁠‍⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠⁠⁢⁣‍‌‍
‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌‍⁢‌‍
‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌‍⁢⁠‍⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢‍⁢⁣‌⁠‍‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁣‌‍
⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠‌⁢‌⁠‍⁠‍

‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁠‌⁢‍
⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢⁢‌⁣‍⁠‍
  • ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢⁣‍⁠‌⁢‍
  • ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁠⁢⁤‍⁢‌

    ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤⁠⁠‍
    <label id="gaJw">⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁠‌‍⁢‌⁠‍</label>
    ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠⁠⁣⁢‌⁢‌‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌‍⁢⁠‍

    ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤⁢‌‍⁠⁣‍

    ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢⁠⁠‍

    ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠⁢‌‍⁢⁤‍
    ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤‍⁢‍
    ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢‍⁢‍
    ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢⁢⁠‍
    ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤‌⁣‍‌⁣
    ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢‍⁢‌
    ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠‌⁠‍⁢‌⁢‍‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤⁢⁠‍‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢⁤‍

    ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢⁠⁠‍
    ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁢‌⁣⁠⁢‌
    ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁠‍⁠‍
    ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤‍⁠‍⁢⁣‍⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢‌⁠⁣⁠‌‍

    ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢⁢⁠‍⁢‌⁣

    ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁠⁠⁢‍
    ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤⁣‍⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢‍‌‍⁠‌⁣‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁣⁠‍⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍‌⁠‍⁢‍‌‍‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁣⁣
    1. <tt id="gaJw">⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁣⁠‍⁠⁣‍</tt>⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢⁣‍⁠⁢⁠‍‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤⁠⁣
      ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠‍‌⁣‍⁢‌⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤⁢‌⁣⁠‌‍
      ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤⁣‍⁤⁣
      ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤‍⁠‍
      ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢⁠⁠‍
      ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁠⁢‌⁣⁠‍
      ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠⁢‌‍⁠‍⁢‌⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤⁢⁠⁣‍⁠‍

      ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁤‍⁠‍⁠‍

      ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌‍⁠⁢‍
      ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁠‌⁢‍
      ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤‍⁢‍
      ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢⁤‍

      ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠‍⁠⁣⁠⁢‍
      ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢‌⁠‍⁠⁤‍
      ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠⁠‌⁣‌⁢‌
      ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢⁢⁠‍⁠‍‌‍
      ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢⁠⁠‍⁤⁢‍
    2. ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤⁢‌‍⁤⁢‌
    3. ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌‍‌⁠‍

      ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠⁠⁣‍‌⁢‌
    4. ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤⁠⁣‌⁠⁣⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁢⁠‌⁢‌⁢‌‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁣⁢‍
        ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤⁠⁣⁣⁢‍
      ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢⁢⁣⁢‍⁢‌
      <del id="gaJw"><tbody id="gaJw"></tbody></del>
    5. ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁠⁢‍‌‍⁢‌
      ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤‍⁢‍
      ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠‌⁢‍‌⁠⁢‍

      ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢⁢‌‍⁢‌⁢‍‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌‍⁠⁢‍‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤‍⁢‍
      ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤‍‌‍⁠⁠‌‍

      ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠‍⁠‍‌⁠⁢‍

      ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤‍⁢‌⁠⁠‌‍‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁠⁢⁠‍⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤‌⁢‌‍‌⁠‍
      ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢‌⁢‌‍‌⁠‍
      ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌‍⁠⁠‍
    6. ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤⁠⁣
    7. ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢⁢‌‍‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁣⁠‍
      ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠‌⁠⁣⁢‌‍
        ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁠⁣⁠‍⁢‌⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁢⁠‌⁠⁢‌‍
        ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁤‍⁠‍⁢‍⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁣⁢‌⁠‌⁣
        ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁠⁢‌⁠‌⁠‍

        ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁣⁣

        ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤‍‌‍
        ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁠⁣⁠⁠⁣
        ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠⁢‌‍‌⁠⁣⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤‌⁢‍⁢‌⁣‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢‍⁠‍⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍‌⁢‌⁠⁠⁣‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌‍‌⁢‌‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁠⁠⁢‍⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢⁠‌‍⁢⁢⁠‍‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁣⁢‌
        ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤⁠⁠‍⁢‍⁠‍
        ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢‍⁠‍‌⁠⁣
        阿里店铺(pu)|凯(kai)泽店(dian)铺|凯(kai)泽顺(shun)企网|凯(kai)泽(ze)靶材店(dian)铺   宝鸡市(shi)凯泽金(jin)属材(cai)料(liao)有(you)限(xian)公(gong)司官(guan)网(wang)!
        全(quan)国(guo)服务热(re)线

        0917-337617013759765500

        微(wei)信客服(fu) 微(wei)信客(ke)服

        首页 >> 新闻(wen)资(zi)讯(xun) >> 行(xing)业(ye)资讯(xun)

        航(hang)空(kong)航(hang)天领域(yu)用(yong)增材制造金(jin)属(shu)材料的(de)应用及其(qi)微(wei)观(guan)组织(zhi)和(he)力(li)学性能

        发(fa)布(bu)时(shi)间:2024-05-07 11:58:41 浏(liu)览(lan)次数 :

        航空(kong)航(hang)天(tian)领(ling)域高(gao)新技(ji)术(shu)密(mi)集(ji),航(hang)空(kong)航(hang)天(tian)高端装(zhuang)备的服(fu)役(yi)性能很(hen)大程(cheng)度(du)上(shang)取(qu)决(jue)于(yu)金(jin)属构(gou)件的(de)性能(neng)。随着(zhe)新(xin)型航空发动机、大(da)飞机、新一代运载火(huo)箭等航空航天产(chan)品(pin)的开发(fa)及新(xin)材(cai)料的(de)应用,对制造(zao)技术的(de)要求(qiu)也越(yue)来(lai)越高[1]。采(cai)用铸、锻、焊、机(ji)加工(gong)等传(chuan)统(tong)制(zhi)造(zao)技术(shu)生(sheng)产航(hang)空(kong)航天领(ling)域用金属(shu)构(gou)件,往往需要(yao)重(zhong)型装备(bei)和(he)大型工模具(ju),技术难(nan)度(du)大(da),材(cai)料加工(gong)余量大(da)、利(li)用率(lv)低(di),生产(chan)周(zhou)期(qi)长(zhang)、成(cheng)本(ben)高(gao),已(yi)难(nan)以满足需求(qiu)[2]。

        近年(nian)来开(kai)发(fa)的(de)增材制(zhi)造(zao)技术(shu)能解决(jue)这(zhe)些(xie)问题。金(jin)属增(zeng)材制造(zao)是以(yi)激光、电(dian)子束或(huo)电弧(hu)作(zuo)热源,根(gen)据三(san)维模型(xing)数(shu)据将(jiang)材(cai)料(流(liu)体、粉末(mo)、丝材、块体(ti))逐(zhu)层(ceng)堆积,进而实(shi)现金(jin)属构(gou)件的直(zhi)接制(zhi)造(zao)[3]。该(gai)制(zhi)造(zao)技术能快速(su)完成高性(xing)能(neng)大型复杂(za)金(jin)属(shu)构(gou)件(jian)的(de)直(zhi)接(jie)近净成(cheng)形(xing),是一种“变(bian)革(ge)性”绿(lv)色低碳(tan)制(zhi)造(zao)技术(shu)[4-5]。目前(qian),金属(shu)增(zeng)材(cai)制(zhi)造技(ji)术已(yi)发展(zhan)成提高航空(kong)航天(tian)设计与(yu)制造(zao)能(neng)力的(de)核(he)心(xin)技(ji)术(shu),其应用范围已从零部(bu)件(jian)(飞机、卫星(xing)、高超飞行(xing)器(qi)、载(zai)人飞船的(de)零部(bu)件打(da)印(yin))扩(kuo)展至(zhi)整机(发动机(ji)、无(wu)人(ren)机(ji)、微(wei)/纳(na)卫(wei)星整机打(da)印(yin))[6]。采(cai)用(yong)金属(shu)增材(cai)制(zhi)造技(ji)术(shu)可(ke)实现复杂(za)金属(shu)构件的(de)材(cai)料(liao)−结(jie)构(gou)一体(ti)化净成形(xing),为航空(kong)航天高(gao)性能构(gou)件的设计(ji)与制(zhi)造提供(gong)了(le)新途径(jing)。

        航(hang)空航天高端装(zhuang)备(bei)正朝着高性(xing)能、长寿(shou)命、高可靠(kao)性及(ji)低(di)成本(ben)的方向(xiang)发展,采用(yong)整体(ti)结(jie)构和(he)复杂(za)大型(xing)化(hua)是(shi)其(qi)发展趋(qu)势(shi)[1]。基(ji)于(yu)这种(zhong)发展(zhan)趋(qu)势(shi),要(yao)求金(jin)属(shu)构件(jian)具有(you)良(liang)好的(de)力学性能(neng),并兼(jian)具(ju)防(fang)热(re)、隔(ge)热(re)、减(jian)振、抗(kang)辐(fu)射(she)等(deng)特殊功(gong)能(neng)[6]。材料(liao)是(shi)制(zhi)造(zao)业的(de)基(ji)础(chu),“一代(dai)材(cai)料(liao)、一(yi)代(dai)装(zhuang)备”,材料(liao)直接(jie)影响(xiang)和决(jue)定(ding)航(hang)空(kong)航天工业的(de)发展(zhan)水平(ping)和(he)质(zhi)量(liang)。目前(qian),以马(ma)氏体时效钢为代(dai)表(biao)的(de)高(gao)强钢[7]、以镍基(ji)高温(wen)合(he)金为代表的耐热合(he)金(jin)[8]、以(yi)钛、铝(lv)合金为(wei)代(dai)表的(de)轻质(zhi)高(gao)强合金(jin)[9-10],均(jun)是重(zhong)要(yao)的航(hang)空航天(tian)领(ling)域(yu)用增材制造(zao)金属材料。通(tong)过创(chuang)新和(he)发(fa)展上述4种合金(jin),并结合增(zeng)材(cai)制(zhi)造控形和控性(xing)技(ji)术(shu),可(ke)实(shi)现材料−结构(gou)−性能(neng)一体(ti)化制造(zao),以(yi)满足航空(kong)航天(tian)领(ling)域(yu)对(dui)增(zeng)材制造金(jin)属构(gou)件的需(xu)求。本(ben)文(wen)从航空航(hang)天领域(yu)对增(zeng)材(cai)制(zhi)造金(jin)属材(cai)料(liao)的需求(qiu)出(chu)发(fa),综(zong)述了航(hang)空(kong)航(hang)天(tian)领域用铁基合(he)金(jin)、镍基合金、钛(tai)合(he)金、铝合(he)金(jin)的研究现(xian)状,指(zhi)出了航(hang)空(kong)航(hang)天(tian)领域用(yong)增材(cai)制(zhi)造金属材(cai)料存(cun)在(zai)的(de)问题及(ji)未来(lai)的(de)研究方向。

        1、航空航(hang)天领(ling)域(yu)用(yong)增(zeng)材(cai)制(zhi)造金(jin)属材料(liao)的应用

        1.1增材(cai)制造(zao)金属(shu)材料(liao)体(ti)系(xi)及其应(ying)用

        航(hang)空航(hang)天(tian)高(gao)性能构(gou)件(jian)多(duo)用(yong)于(yu)极(ji)端(duan)苛刻的(de)环(huan)境(jing),要(yao)具有(you)超(chao)强承载、极(ji)端耐热、超(chao)轻量化和高(gao)可(ke)靠(kao)性(xing)等(deng)特(te)性[6]。航空航天领(ling)域(yu)用(yong)增(zeng)材制造(zao)金属(shu)材料的(de)种类(lei)繁多,其合金(jin)体(ti)系(xi)及(ji)主(zhu)要(yao)牌号(hao)如图1所示。根据(ju)化学成(cheng)分,可(ke)将(jiang)航空(kong)航(hang)天用增(zeng)材制造金(jin)属(shu)材(cai)料分(fen)为铁(tie)基合金(jin)、镍基合金(jin)、钴(gu)基合(he)金、钛(tai)合(he)金、铝(lv)合金、铜合(he)金(jin)等,其(qi)中铁基合(he)金、镍基(ji)合金、钛合金、铝(lv)合(he)金的生产和应用量(liang)大面(mian)广[11]。

        360截图16190824698373.jpg

        表(biao)1归纳了航(hang)空航(hang)天(tian)领域用(yong)典型增(zeng)材(cai)制造(zao)金(jin)属(shu)材(cai)料(liao)及其(qi)应用(yong)。铁(tie)基(ji)合(he)金的(de)成本(ben)低,具有广阔(kuo)的应(ying)用前(qian)景。目(mu)前(qian),航(hang)空(kong)航(hang)天(tian)用增(zeng)材(cai)制造铁(tie)基合(he)金(jin)主(zhu)要(yao)包括马氏(shi)体(ti)时(shi)效钢(gang)、不锈钢等。

        马(ma)氏(shi)体时(shi)效(xiao)钢(gang)有AerMet100、18Ni(300)等(deng),在(zai)火(huo)箭(jian)和导(dao)弹发(fa)动机(ji)等(deng)领域(yu)都(dou)有(you)应用[12];不(bu)锈钢(如(ru)SS304L、SS316L等)具有良(liang)好的(de)耐(nai)蚀性能(neng),主(zhu)要(yao)用(yong)于(yu)发动机(ji)和(he)排(pai)气系统(tong)、液(ye)压件、热(re)交(jiao)换(huan)器(qi)、起落架系统(tong)和(he)接头(tou)等[13]。

        b1.jpg

        现代(dai)航(hang)空发(fa)动(dong)机(ji)中,高温合金用(yong)量(liang)占(zhan)发动机(ji)总质(zhi)量(liang)的40%~60%,主要(yao)用于(yu)燃烧(shao)室、导(dao)向叶(ye)片、涡(wo)轮(lun)叶片(pian)和涡轮盘(pan)等(deng)热端(duan)部(bu)件(jian),以(yi)及机匣、环件(jian)、加(jia)力燃(ran)烧室(shi)和(he)尾(wei)喷(pen)口等部件(jian)。高(gao)温合金有铁(tie)基、镍基(ji)、钴(gu)基等(deng),镍基(ji)高温合金的应用(yong)最为广(guang)泛(fan),其用量占比(bi)高(gao)达(da)80%。常用(yong)的镍(nie)基(ji)高(gao)温合(he)金(jin)有IN625、IN718等(deng),主要(yao)用于涡(wo)轮(lun)发(fa)动(dong)机燃(ran)烧(shao)室(shi)、涡轮机、外壳、圆盘、叶(ye)片等(deng),以(yi)及液体(ti)火(huo)箭(jian)发动(dong)机的(de)阀(fa)门(men)、涡轮机(ji)械、喷(pen)射(she)器(qi)、点(dian)火器(qi)和(he)歧管(guan)等(deng)[13]。

        钛(tai)合(he)金具有比(bi)强度高、耐蚀性(xing)能好(hao)等(deng)优点,广泛(fan)用(yong)于(yu)航(hang)空航天(tian)领域。TC4合金(jin)常(chang)用(yong)于(yu)起落架、轴(zhou)承架(jia)、旋转(zhuan)机(ji)械、压(ya)缩(suo)机盘及叶片、低温推(tui)进剂罐等(deng)航空航天零件。Ti6242合(he)金用于压(ya)缩机(ji)叶(ye)片(pian)和(he)旋(xuan)转(zhuan)机械,而γ-TiAl合金(jin)较多(duo)用(yong)于涡轮叶(ye)片(pian)[13]。此外(wai),TC2、TC18、TC21、TA15等(deng)钛(tai)合金(jin)常(chang)用(yong)于(yu)飞机(ji)主(zhu)承载(zai)件(jian),TC11、TC17、Ti60合(he)金(jin)等(deng)可(ke)用于整(zheng)体叶(ye)盘等(deng)航(hang)空(kong)发动(dong)机(ji)部(bu)件[14]。

        铝(lv)合金(jin)比强(qiang)度(du)高(gao),是(shi)一种成熟(shu)的航空(kong)航天领(ling)域(yu)用(yong)材(cai)料(liao)。目(mu)前(qian),可增材(cai)制造飞机零(ling)件的(de)铝(lv)合金有(you)AlSi10Mg、A6061、AlSi12、AlSi12Mg等,常用于要求(qiu)减轻(qing)质量(liang)、降低成本(ben)的部(bu)件(jian),如(ru)飞(fei)机机(ji)身件(jian)等[15]。

        总体上(shang)看(kan),增(zeng)材(cai)制(zhi)造(zao)金属(shu)材(cai)料在(zai)航空航(hang)天(tian)领(ling)域(yu)具有(you)广(guang)阔的应用(yong)前景。航空航(hang)天(tian)领(ling)域用增(zeng)材制(zhi)造金属(shu)材料的应用(yong)主(zhu)要有四(si)方面(mian):(1)卫(wei)星制(zhi)造(zao),如卫星(xing)推(tui)进系统的钛(tai)合(he)金活塞和(he)肼(jing)推进系(xi)统,卫(wei)星(xing)的钛合金(jin)与(yu)铝合(he)金支架(jia);(2)火箭制造(zao),如火箭(jian)发动(dong)机的热(re)端部(bu)件(jian)等(deng);(3)飞机(ji)制(zhi)造(zao),如(ru)飞(fei)机(ji)机身(shen)、大型结构(gou)件、承(cheng)力(li)结(jie)构件(jian),飞机(ji)发(fa)动机的(de)热(re)端部(bu)件(jian);(4)武(wu)器装备(bei)制(zhi)造,如无人(ren)机(ji)发(fa)动机及(ji)巡(xun)飞弹的(de)关键部件(jian)等。

        1.2增材(cai)制(zhi)造(zao)金属(shu)材(cai)料的(de)市(shi)场(chang)规(gui)模(mo)

        采用增材制造(zao)技(ji)术可(ke)实现(xian)复(fu)杂金属构件(jian)的(de)材料(liao)−结构(gou)一(yi)体(ti)化(hua)净(jing)成形,为航空航天高性能(neng)构件(jian)的设(she)计制造提(ti)供(gong)了(le)新的技术途(tu)径(jing)。增材(cai)制造全球(qiu)权(quan)威发(fa)展(zhan)报(bao)告“WohlersReport”指(zhi)出[17],增(zeng)材制(zhi)造技(ji)术已发(fa)展(zhan)成能(neng)提(ti)高航(hang)空(kong)航(hang)天领域(yu)设计(ji)与(yu)制(zhi)造能力(li)的核(he)心(xin)技术(shu),其(qi)在工(gong)业应用(yong)中的(de)比(bi)例(li)达(da)14.7%。增材制(zhi)造技术(shu)能在(zai)航空(kong)航(hang)天领域被广(guang)泛应用,主要是因(yin)其(qi)在(zai)轻量化、复杂(za)结(jie)构(gou)一(yi)体化(hua)成(cheng)形(xing)等(deng)方(fang)面(mian)的(de)显著优(you)势。

        WohlersAssociates统计数(shu)据(ju)(图(tu)2)[17]表明(ming),2021年(nian)增材(cai)制(zhi)造产业(ye)销售(shou)额(e)中,增(zeng)材制造服务(wu)(零部件制造)占(zhan)比为(wei)41.0%,增(zeng)材制(zhi)造(zao)材(cai)料占比为23.4%,成形装备(bei)占(zhan)比为(wei)22.4%,其(qi)他(ta)占(zhan)比(bi)为13.2%。从材料(liao)方面(mian)看(kan),全(quan)球(qiu)增材(cai)制(zhi)造材料(liao)销(xiao)售额(e)从2017年的(de)11.33亿(yi)美元升(sheng)至2021年(nian)的25.98亿美元(yuan),年(nian)复合增(zeng)长率达(da)23.06%。其(qi)中2021年(nian)金(jin)属(shu)材料销(xiao)售(shou)额达(da)4.73亿(yi)美(mei)元(yuan),在(zai)全球增材(cai)制造(zao)材料(liao)总销(xiao)售(shou)额(e)中占(zhan)比(bi)约(yue)18.20%,同(tong)比增长(zhang)23.50%,年(nian)复(fu)合增长率为(wei)26.80%。可(ke)见,增(zeng)材(cai)制(zhi)造(zao)材(cai)料市场快速扩(kuo)大,其(qi)中金(jin)属材料(liao)市(shi)场增(zeng)速(su)领(ling)先(xian),增(zeng)材(cai)制(zhi)造金属(shu)材料发(fa)展(zhan)潜(qian)力(li)巨大(da)。

        360截(jie)图(tu)1644080588135118.jpg

        2、航(hang)空(kong)航(hang)天领域(yu)用增(zeng)材(cai)制造(zao)金属材料及(ji)其应用(yong)

        2.1增(zeng)材制(zhi)造铁基合(he)金及(ji)其应用

        马(ma)氏体(ti)高(gao)强(qiang)钢是(shi)航(hang)空(kong)航(hang)天(tian)领(ling)域用(yong)增(zeng)材(cai)制(zhi)造铁基(ji)合(he)金(jin),主(zhu)要包(bao)括(kuo)马氏体不锈钢(gang)和马(ma)氏体时效(xiao)钢(gang)[18],具(ju)有良(liang)好(hao)的(de)强度和韧(ren)性。从节能(neng)和降(jiang)低(di)生产成本的(de)角(jiao)度考(kao)虑,高(gao)强(qiang)钢(gang)仍是(shi)未(wei)来航空航(hang)天领域(yu)用(yong)增(zeng)材(cai)制造金属(shu)材(cai)料(liao)的重要研(yan)究(jiu)方向[19]。沉淀硬化(hua)不锈(xiu)钢的典型(xing)牌(pai)号有(you)15-5PH、17-4PH等(deng)[18,20]。以(yi)17-4PH钢为(wei)例,由(you)于(yu)第二相析(xi)出强化,其(qi)具有高(gao)强度(du)和高耐蚀(shi)性(xing),常(chang)用于(yu)航空发动机(ji)精(jing)密零件[21-22]。马(ma)氏体时(shi)效钢的典型(xing)牌号有(you)AerMet100、18Ni(300)等[23-24],以(yi)18Ni(300)为(wei)例(li),其(qi)优异的强度(du)、韧性、硬(ying)度、耐蚀性和耐(nai)磨性(xing)主(zhu)要(yao)源(yuan)于固溶(rong)强化、相(xiang)变强(qiang)化和时(shi)效(xiao)强(qiang)化,在(zai)火箭(jian)和导弹(dan)发动(dong)机等(deng)领(ling)域(yu)都(dou)有应用[23]。

        2.1.1微观组(zu)织(zhi)与力学(xue)性能(neng)

        马氏(shi)体(ti)不锈钢的(de)室温(wen)组织(zhi)为(wei)细小的板条(tiao)马氏(shi)体、适(shi)量的(de)残留(liu)奥氏(shi)体(ti)及(ji)弥散(san)分布的(de)沉(chen)淀强(qiang)化相[18]。板(ban)条(tiao)马氏体(ti)由(you)于(yu)位错(cuo)密(mi)度高(gao),具(ju)有(you)很高的(de)强度(du)。亚稳(wen)残(can)留奥氏(shi)体(ti)能缓(huan)解(jie)裂(lie)纹尖端的应(ying)力集(ji)中,从而(er)提高(gao)材(cai)料(liao)韧性。时(shi)效(xiao)处理析(xi)出的(de)纳(na)米(mi)级强(qiang)化相能(neng)进(jin)一(yi)步(bu)提高(gao)钢的(de)强度(du)[25]。

        表2列出了(le)4种典(dian)型(xing)增(zeng)材(cai)制造(zao)马(ma)氏(shi)体(ti)不锈(xiu)钢和马氏体时(shi)效(xiao)钢(gang)的(de)力学(xue)性能(neng)。表2表明,15-5PH和17-4PH不(bu)锈(xiu)钢的(de)强度较(jiao)低(di),主要强(qiang)化(hua)相为富Cu相,如(ru)ε-Cu相(xiang)等[21,26]。此(ci)外(wai),钢中MC相(xiang)具(ju)有(you)钉扎晶界、细化晶粒(li)的作(zuo)用。

        360截(jie)图166403256771103.jpg

        马氏(shi)体时(shi)效(xiao)钢的(de)微观(guan)组织与(yu)马氏体不锈钢(gang)类(lei)似(shi),主要(yao)通过超(chao)低(di)碳(tan)铁(tie)镍马氏体基(ji)体中(zhong)析(xi)出金(jin)属间化合物(wu)强化,具(ju)有(you)优异(yi)的(de)综(zong)合(he)力(li)学(xue)性(xing)能(neng)[27]。以AerMet100、18Ni(300)钢(gang)为(wei)例(li),其(qi)沉积态(tai)组织为(wei)具有近亚微(wei)米(mi)级(ji)胞结(jie)构的(de)马氏(shi)体[28-29]。时效处(chu)理后,会析(xi)出高(gao)密度的(de)纳米(mi)级Ni3X(X=Ti,Al,Mo)金(jin)属间化合物(wu),使(shi)抗(kang)拉(la)强度提高(gao)至~2000MPa[24,30]。目前有(you)关增(zeng)材制造(zao)马(ma)氏体(ti)时效(xiao)钢的研究主要(yao)是(shi)18Ni(300)钢(gang),研(yan)究内(nei)容集中(zhong)在成(cheng)形(xing)工(gong)艺(yi)参(can)数优化、热处理(li)工艺(yi)与组(zu)织(zhi)性(xing)能(neng)之间的(de)关系(xi)、时效(xiao)强(qiang)化(hua)机(ji)制(zhi)等[7,29,31-36]。

        为改善(shan)成(cheng)形(xing)件(jian)的(de)质量(liang)和力(li)学(xue)性能(neng),通常采(cai)取(qu)设(she)计增(zeng)材制造专(zhuan)用(yong)合金(jin)粉(fen)末、优(you)化(hua)激(ji)光(guang)增材(cai)制(zhi)造(zao)工(gong)艺参数(shu)和(he)调控(kong)微观组(zu)织(zhi)等措施[23]。现有(you)的(de)广(guang)泛应(ying)用于航空(kong)航(hang)天(tian)领(ling)域(yu)的增(zeng)材制(zhi)造(zao)马(ma)氏体(ti)高(gao)强(qiang)钢(gang)粉(fen)末(mo)主(zhu)要为(wei)传(chuan)统(tong)块体(ti)材料(liao),适(shi)用于增(zeng)材(cai)制(zhi)造(zao)技(ji)术(shu)的(de)马氏体(ti)高(gao)强(qiang)钢专用粉末(mo)较(jiao)少(shao)。为(wei)提高成形件的(de)质(zhi)量和力(li)学性能,需基(ji)于(yu)增(zeng)材(cai)制(zhi)造技术独(du)特的(de)高(gao)冷却(que)速(su)度、温度(du)梯(ti)度及非平(ping)衡(heng)热(re)循环等特点,设(she)计适用于增材(cai)制(zhi)造(zao)工艺(yi)的新(xin)型马氏(shi)体高(gao)强(qiang)钢粉末。开发增(zeng)材制造(zao)用新(xin)型(xing)马(ma)氏(shi)体高强(qiang)钢(gang)粉末是(shi)航(hang)空(kong)航(hang)天(tian)领域(yu)用(yong)增(zeng)材制(zhi)造金(jin)属材(cai)料(liao)的重要(yao)研究(jiu)方(fang)向(xiang)。

        2.1.2应(ying)用实(shi)例(li)

        增材(cai)制(zhi)造(zao)技(ji)术在飞(fei)机零(ling)件(jian)结(jie)构优(you)化(hua)和缺陷修复方面(mian)具有(you)一定优势。欧(ou)洲宇(yu)航防务(wu)集团(tuan)公司将拓(tuo)扑优化技(ji)术(shu)与(yu)增材(cai)制(zhi)造技术相结合(he),为(wei)空(kong)客(ke)A380打(da)印的(de)不(bu)锈钢(gang)支(zhi)架(jia)质(zhi)量与(yu)传(chuan)统铸件(jian)相(xiang)比约(yue)减小了(le)40%,单架机(ji)年(nian)运(yun)营费(fei)等(deng)成本(ben)降低(di)了数万美元[38]。北(bei)京航(hang)空材(cai)料(liao)研(yan)究院(yuan)采(cai)用激光(guang)修(xiu)复(fu)技(ji)术(shu),对第三(san)代战(zhan)机、伊尔76飞(fei)机的超高(gao)强度(du)钢起(qi)落架、不锈(xiu)钢轴颈(jing)等(deng)承(cheng)载件进(jin)行(xing)了(le)修(xiu)复,部分修(xiu)复的零(ling)件已通过(guo)装机评(ping)审(shen)并被再次(ci)应(ying)用[39],修(xiu)复的(de)伊(yi)尔76飞机(ji)超(chao)高(gao)强(qiang)度(du)钢(gang)起(qi)落(luo)架状(zhuang)态(tai)良(liang)好。

        2.2增材(cai)制(zhi)造镍基合金及(ji)其应(ying)用

        航(hang)空(kong)发动机(ji)的推(tui)重比和功率在(zai)不断(duan)提高(gao),涡(wo)轮入(ru)口温(wen)度也(ye)随(sui)之(zhi)升高(gao),对(dui)高(gao)温(wen)合金(jin)叶(ye)片性能的要求也(ye)越(yue)来(lai)越(yue)高(gao)。目前,镍(nie)基高温(wen)合(he)金(jin)的(de)应(ying)用(yong)最(zui)为广(guang)泛(fan),其在(zai)650~1000℃具有较(jiao)高的(de)强度(du)、良好(hao)的(de)抗氧(yang)化(hua)和抗燃(ran)气腐蚀性(xing)能(neng)等(deng)。典型(xing)的镍基高(gao)温(wen)合金有IN625、IN718等,两者(zhe)用(yong)量(liang)占(zhan)镍基(ji)高(gao)温(wen)合(he)金总量(liang)的(de)83%,常(chang)用(yong)于航(hang)空发动机燃(ran)烧(shao)室(shi)、发(fa)动机(ji)尾(wei)喷管(guan)等零(ling)部件[40-41]。

        2.2.1微(wei)观组织(zhi)与力学性(xing)能

        镍基高(gao)温(wen)合(he)金(jin)是以镍为(wei)主要成分(fen)(镍质(zhi)量分数一(yi)般大于50%)的(de)高温(wen)合(he)金(jin),主要通过(guo)Nb和Mo的(de)固溶(rong)强(qiang)化提高(gao)其力学性(xing)能(neng),Ni和Cr具(ju)有(you)较(jiao)好(hao)的耐蚀(shi)和(he)抗(kang)氧化性(xing)能(neng),Mo具有优(you)异(yi)的抗(kang)点蚀(shi)性(xing)能[42-43]。镍(nie)基高温合金(jin)基体(ti)为γ相、强(qiang)化(hua)相(xiang)为γ′相,在常(chang)温和高(gao)温下均(jun)具(ju)有强(qiang)化作用(yong),被广(guang)泛(fan)应(ying)用(yong)于(yu)航(hang)空(kong)航(hang)天(tian)热(re)端部(bu)件(jian)[44]。

        采用选(xuan)区(qu)激光(guang)熔炼(lian)(SLM)工艺(yi)制(zhi)备镍(nie)基(ji)高温合(he)金件(jian)的(de)过(guo)程(cheng)中(zhong),工(gong)艺(yi)参(can)数(shu)会显(xian)著影响(xiang)零件的力学(xue)性能[16]。SLM成形(xing)镍基高(gao)温合(he)金(jin)件通常(chang)需(xu)进(jin)行(xing)后(hou)处(chu)理(li)(如热等静(jing)压处(chu)理、固溶处理、时效(xiao)等),来改善其显(xian)微组织(zhi)和(he)力学(xue)性(xing)能(neng)[45]。表3归(gui)纳了(le)SLM成形镍(nie)基(ji)高(gao)温(wen)合金经不(bu)同(tong)工艺热处理(li)后(hou)的(de)力学(xue)性能(neng)。IN718合(he)金是富(fu)含(han)Cr和Fe的沉淀硬(ying)化(hua)镍(nie)基合(he)金,SLM成形(xing)IN718合(he)金沉(chen)积态(tai)的屈(qu)服(fu)强度(du)约为580MPa,时(shi)效(xiao)后可提高至(zhi)1000MPa以(yi)上。

        360截(jie)图16430915256154.jpg

        增(zeng)材(cai)制(zhi)造(zao)IN718合(he)金(jin)的热处(chu)理(li)工艺(yi)通常包括析出(chu)时(shi)效(xiao)、δ相时(shi)效(xiao)+析(xi)出时(shi)效、高温(wen)组织(zhi)均匀化(hua)+δ相(xiang)时(shi)效+析出时(shi)效等(deng)[50-51]。析出时效(xiao)处理时(shi),时(shi)效温度(du)较(jiao)低(di)不会使沉积态组织(zhi)发(fa)生变化,仅(jin)促(cu)进γ''相和γ'相析出(chu),也(ye)不能消除(chu)打印(yin)过(guo)程(cheng)中(zhong)形(xing)成(cheng)的Laves相(xiang)。Laves相为有害相,会(hui)降(jiang)低材(cai)料(liao)的力学(xue)性能[52]。因(yin)此(ci),通常(chang)对增材(cai)制造(zao)IN718合金进行(xing)温(wen)度高(gao)于(yu)970℃的均匀(yun)化(hua)处理(li),以消(xiao)除(chu)Laves相(xiang)。“δ相时效+析(xi)出时(shi)效”处理(li)可使(shi)晶界的(de)Laves相(xiang)溶(rong)解(jie)并转变为(wei)沿晶(jing)界析出(chu)的δ相(xiang)。此外,δ相会(hui)随(sui)“δ相(xiang)时效”时(shi)间的延(yan)长(zhang)而(er)长大,且亚稳(wen)态(tai)γ''相会转(zhuan)变为δ相(时效(xiao)温度650℃)。进(jin)行高温(wen)组(zu)织(zhi)均(jun)匀(yun)化+δ相(xiang)时效(xiao)+析(xi)出时效(xiao)处理(li)时,高温(wen)组织均匀化(hua)处理不(bu)仅(jin)影(ying)响γ''相和δ相的(de)析出(chu)行(xing)为,也影响材(cai)料的再(zai)结(jie)晶程(cheng)度。固(gu)溶温度高(gao)于1180℃时,沉(chen)积(ji)态组织(zhi)将发生(sheng)完全再(zai)结晶(jing),且(qie)随着(zhe)均匀化温度(du)的(de)提高(gao)和(he)时(shi)间的延长(zhang),Laves相或(huo)碳(tan)化(hua)物(wu)完全溶(rong)解,γ''相尺(chi)寸(cun)增(zeng)大[51,53]。可(ke)见(jian),合适的热处理能(neng)促进(jin)γ''和(he)γ'相(xiang)重新析(xi)出(chu),从而(er)显(xian)著(zhu)提(ti)高增材制(zhi)造IN718合(he)金(jin)的屈服强度。

        IN718合金(jin)增(zeng)材(cai)制造过(guo)程中极(ji)高的温度(du)梯(ti)度(du)和(he)极快的(de)冷(leng)却(que)速(su)度会抑制γ''和γ'相析出,导致增材制(zhi)造IN718合金的(de)硬度和(he)强度(du)降低[48]。根据(ju)增(zeng)材(cai)制造镍(nie)基高(gao)温(wen)合(he)金的(de)微(wei)观组(zu)织特点(dian),通(tong)过开(kai)发新的热处理(li)工艺(yi),有望使其获得(de)良好(hao)的综(zong)合力学(xue)性(xing)能[54]。沉(chen)积态增材制(zhi)造镍基(ji)高温(wen)合(he)金(jin)件(jian)的(de)综(zong)合力(li)学性(xing)能(neng)往往(wang)达(da)不(bu)到(dao)锻(duan)造(zao)件的水(shui)平(ping),且(qie)成形过程中(zhong)易产(chan)生(sheng)微(wei)裂(lie)纹(wen)等(deng)缺陷。通过添加(jia)合金元(yuan)素(Y、Re等[55-56])或(huo)陶瓷颗粒(TiB2、TiC、TiN等(deng)[57-59])等(deng)对高温合金(jin)进(jin)行改性,可一(yi)定(ding)程度上提(ti)高其(qi)高温性能。

        2.2.2应(ying)用实例(li)

        镍基(ji)高(gao)温合金(jin)适合制(zhi)备(bei)形(xing)状复(fu)杂(za)且(qie)极难加(jia)工的结构件(jian),如火(huo)箭推进器零件、助(zhu)推(tui)器(qi)等。

        印度(du)国(guo)防冶金(jin)研(yan)究实(shi)验室(DefenceMetallurgicalResearchLaboratory,DMRL)采用增材制(zhi)造(zao)技(ji)术(shu)制备(bei)了升级(ji)版燃料(liao)喷射(she)器,其抗(kang)压(ya)、抗拉(la)性能(neng)和硬(ying)度(du)均(jun)优(you)于采(cai)用传(chuan)统(tong)工艺制(zhi)造的(de)燃料(liao)喷射器(qi),具(ju)有(you)强(qiang)大(da)的(de)应(ying)用(yong)潜(qian)力(li)[60]。美(mei)国(guo)马(ma)歇(xie)尔太空飞(fei)行中心(MarshallSpaceFlightCenter,MSFC)成功(gong)制(zhi)备(bei)了IN625合金(jin)整(zheng)体推力(li)室,该(gai)推力室(shi)内(nei)部有(you)完整(zheng)的通(tong)道(dao)结(jie)构,可(ke)用于(yu)腔室(shi)的(de)通道冷(leng)却(que)喷(pen)嘴(zui)[61]。换热器(qi)是航(hang)天设(she)备(bei)长(zhang)效(xiao)稳(wen)定运(yun)行的关(guan)键部件(jian),法(fa)国AddUp、Sogeclair和Temisth公司(si)采(cai)用(yong)增(zeng)材制(zhi)造(zao)技术(shu)成(cheng)功(gong)制(zhi)备了薄(bao)壁(bi)IN718合(he)金换热器,其(qi)质量和性能与(yu)增材(cai)制造(zao)的(de)铝制(zhi)外壳(ke)相近(jin)[62]。

        2.3增(zeng)材(cai)制(zhi)造钛合金(jin)及其应用(yong)

        钛合(he)金具有(you)较(jiao)高(gao)的比强(qiang)度、良(liang)好的韧性(xing)、耐(nai)腐蚀(shi)、耐(nai)热耐寒性等(deng),是(shi)航空发动(dong)机(ji)用(yong)重要(yao)材料之一[6]。目(mu)前(qian),增材(cai)制(zhi)造的(de)钛合金(jin)主要(yao)有TC4、TA15、TC11、Ti55、Ti60、TiAl等,主(zhu)要应(ying)用于(yu)发动机叶(ye)片(pian)、机(ji)匣(xia),飞机钣(ban)金(jin)件(jian)、梁(liang)、接(jie)头、大型(xing)壁(bi)板(ban)等。TC4合金(Ti-6Al-4V)具(ju)有良(liang)好的综合性能,在(zai)航空航天领(ling)域的(de)用(yong)量最大,使(shi)用温度一(yi)般(ban)在(zai)400℃以(yi)下,能在(zai)400℃以(yi)上使(shi)用(yong)的钛(tai)合金(jin)主要(yao)有TA15、TC11、Ti-55及(ji)Ti60等。

        2.3.1微(wei)观(guan)组(zu)织与力学性能(neng)

        激光增材(cai)制(zhi)造(zao)钛(tai)合(he)金是(shi)极端非(fei)平衡凝固过程,其快速(su)熔化(hua)和快(kuai)速(su)凝固完(wan)全偏离了常(chang)规(gui)工艺的(de)平(ping)衡/近平衡(heng)凝固(gu)过(guo)程。激(ji)光(guang)成(cheng)形钛合金的沉积(ji)态组(zu)织(zhi)主要为柱(zhu)状初生β相及(ji)细小的(de)针状(zhuang)α′马(ma)氏体(ti),成(cheng)品(pin)显微组(zu)织(zhi)高(gao)度依(yi)赖(lai)沉(chen)积过程中(zhong)的热(re)循环(huan)和随后(hou)的热处理。通过控(kong)制(zhi)固(gu)溶(rong)和时(shi)效温度、冷(leng)却(que)速(su)率等(deng)并结合适当的热(re)变形(xing)加工,可获(huo)得(de)传(chuan)统钛合金(jin)的(de)等轴、双态(tai)、魏(wei)氏(shi)或网状等(deng)典(dian)型(xing)组(zu)织。以Ti-6Al-4V合(he)金为(wei)例(li),由(you)于SLM成(cheng)形过(guo)程的(de)冷(leng)却速率(lv)极快(kuai),远(yuan)高于发生(sheng)马氏体(ti)相变的(de)冷却(que)速(su)率(lv),急速冷(leng)却时(shi)初(chu)生(sheng)β相(xiang)将(jiang)发(fa)生无(wu)扩(kuo)散相(xiang)变(bian),转变为非平(ping)衡(heng)针状(zhuang)马氏(shi)体(ti)(α'),其(qi)室温抗(kang)拉(la)强度(du)超(chao)过(guo)1200MPa,但断(duan)后伸长率(lv)仅约(yue)为8%(表4)[63]。

        360截图(tu)1666120192111106.jpg

        在(zai)SLM的(de)极端非(fei)平衡凝固条(tiao)件下,钛合金(jin)往(wang)往会形成(cheng)粗大的柱状(zhuang)晶组(zu)织,导(dao)致力(li)学(xue)性(xing)能(neng)各向(xiang)异性,使构件累积损(sun)伤(shang)失(shi)效[64-66]。为(wei)避(bi)免粗(cu)大柱(zhu)状晶(jing)组织(zhi)的(de)不(bu)良影响(xiang),可向钛(tai)合金(jin)中(zhong)添(tian)加Cu、Ni等(deng)合(he)金元素[67-69]以及(ji)ZrN、TiB2、ZrB2等(deng)陶(tao)瓷(ci)颗粒(li)[70-75],以促(cu)进等轴晶形(xing)成。

        研(yan)究(jiu)表(biao)明(ming),向(xiang)纯(chun)钛中加(jia)入(ru)一定(ding)量的Cu,在(zai)SLM成(cheng)形(xing)的(de)Ti-Cu合(he)金中(zhong)形成(cheng)了(le)细小(xiao)的等轴晶粒(li)[76]。该成分(fen)合(he)金(jin)凝固过(guo)程中(zhong)固(gu)液(ye)前沿(yan)的(de)成分过冷区(qu)显著扩大(da),消(xiao)除了增(zeng)材制(zhi)造温(wen)度(du)梯度大(da)的(de)不(bu)良(liang)影(ying)响,限(xian)制晶粒(li)长大的同时(shi)提(ti)高形核速率(lv),促(cu)进(jin)精细等轴晶形(xing)成。在(zai)无(wu)后处(chu)理(li)的情况下,制(zhi)备(bei)的Ti-Cu合金与传(chuan)统合(he)金(jin)相(xiang)比具有(you)较高的(de)屈服强度和断后(hou)伸(shen)长(zhang)率(表4)。笔(bi)者团队受其启发(fa),向纯(chun)钛中(zhong)加(jia)入(ru)微量(liang)Ni,在(zai)SLM成形(xing)的(de)Ti-Ni合金中产(chan)生了直径(jing)约1.2μm的(de)等(deng)轴晶[69]。通过(guo)进(jin)一步(bu)优化SLM工艺获(huo)得(de)了具有(you)细小等轴(zhou)晶的(de)纳(na)米(mi)马氏(shi)体(ti)(α')组(zu)织,并(bing)避免(mian)了(le)脆(cui)性Ti2Ni相的(de)形成,该(gai)高强(qiang)韧(ren)钛合(he)金的强度和塑(su)性均优于上(shang)述Ti-Cu合(he)金(jin)(表(biao)4)。可(ke)见,设计(ji)新(xin)合(he)金(jin)成分扩大(da)凝固(gu)过程(cheng)中(zhong)固(gu)液(ye)前沿(yan)的(de)成分过冷(leng)区(qu)是(shi)使增材制造钛(tai)合金(jin)获(huo)得精细(xi)等(deng)轴(zhou)晶(jing)的(de)有效途径。

        传(chuan)统钛(tai)合(he)金(jin)的(de)激(ji)光增材成(cheng)形性能较好,增(zeng)材制(zhi)造工(gong)艺(yi)较成(cheng)熟。而(er)增(zeng)材制(zhi)造技术固有的凝(ning)固(gu)特(te)点导(dao)致(zhi)的钛合金(jin)微观组(zu)织(zhi)调(diao)控(kong)难题,仍(reng)需从(cong)粉体(ti)成分方(fang)面(mian)着手解(jie)决(jue)。钛(tai)合(he)金(jin)增(zeng)强(qiang)增(zeng)韧方法是(shi)SLM成(cheng)形钛合(he)金的(de)研(yan)究(jiu)重(zhong)点。

        2.3.2应(ying)用实(shi)例

        国内外(wai)增材(cai)制造钛(tai)合金(jin)已(yi)广(guang)泛应用于(yu)多种(zhong)飞(fei)机(ji)的(de)复(fu)杂构件及(ji)航空(kong)发动(dong)机(ji)零(ling)部件(jian),具(ju)有显(xian)著的(de)成本和(he)效(xiao)率优势(shi)。王华(hua)明团队(dui)致(zhi)力(li)于(yu)增材(cai)制造(zao)技术的研(yan)究(jiu),采用钛(tai)合金成(cheng)功(gong)制(zhi)造了(le)国内尺(chi)寸(cun)最(zui)大、结(jie)构最(zui)复(fu)杂(za)的(de)飞机关键构件[2]。西北(bei)工业(ye)大学黄卫(wei)东(dong)团队(dui)采用(yong)激(ji)光(guang)增(zeng)材(cai)制(zhi)造(zao)技(ji)术成功(gong)制造了C919大飞机(ji)用(yong)Ti-6Al-4V合金(jin)翼肋上(shang)下缘条(tiao),其(qi)静载强度(du)及(ji)疲(pi)劳性(xing)能达(da)到了锻件(jian)水平(ping)[79]。中国(guo)航(hang)天(tian)科(ke)工(gong)306所将SLM技术(shu)与异(yi)种(zhong)钛(tai)合(he)金(TA15与Ti2AlNb)过渡复合技术相结合,采用(yong)SLM成形(xing)技术(shu)成(cheng)功制造(zao)了(le)航空(kong)发(fa)动机复(fu)合(he)材(cai)料燃(ran)烧(shao)室,克(ke)服了传统铸件(jian)强(qiang)度(du)低、接口(kou)易(yi)断(duan)裂(lie)等(deng)问题,顺利通(tong)过(guo)了力(li)-热(re)联(lian)合(he)试(shi)验(yan)[79]。意(yi)大利(li)Avio公(gong)司(si)采(cai)用电(dian)子(zi)束选(xuan)区(qu)熔融(rong)成形技(ji)术成(cheng)功(gong)制(zhi)造了航(hang)空(kong)发动(dong)机钛合(he)金低(di)压涡轮(lun)叶(ye)片,800℃屈服(fu)强度达480MPa,具(ju)有(you)良(liang)好(hao)的(de)抗蠕(ru)变(bian)性能(neng)[80]。挪威(wei)NorskTitanium公(gong)司开(kai)发了(le)等(deng)离(li)子电弧熔丝(si)增材制造钛(tai)合金组(zu)件,通过了美(mei)国(guo)联(lian)邦航(hang)空(kong)局(FederalAviationAdministration,FAA)认(ren)证,已成功应用(yong)于波音(yin)787[79]。

        2.4增材制造铝合金及(ji)其应用

        铝合金(jin)是航空(kong)航天(tian)领(ling)域常用的轻(qing)金属。激(ji)光(guang)增材(cai)制(zhi)造(zao)铝(lv)合(he)金(jin)有难(nan)度(du),这(zhe)与(yu)其特殊(shu)的物(wu)理性(xing)质(zhi)(密度(du)低(di)、激光(guang)吸收率(lv)低、热(re)导(dao)率(lv)高(gao)及(ji)易(yi)氧化(hua)等(deng))有关[81]。锻造铝合金(jin)凝固(gu)温度(du)范围较大(da),快速凝(ning)固(gu)时(shi)产生的应(ying)力(li)易导(dao)致开(kai)裂(lie)、变形(xing)[82]。铸(zhu)造铝(lv)合(he)金(jin)含(han)有(you)共(gong)晶元(yuan)素(su)(如Si),凝固温度(du)范围(wei)较小,因(yin)而热(re)裂倾(qing)向小(xiao),成(cheng)形性能(neng)好,因此(ci)铸(zhu)造Al-Si系(xi)合金是研(yan)究(jiu)最(zui)早且(qie)增(zeng)材(cai)制造工(gong)艺(yi)最成熟(shu)的(de)铝合金。目前,增材(cai)制造(zao)铝(lv)合(he)金(jin)主(zhu)要(yao)有(you)AlSi7Mg、AlSi10Mg、AlSi12等,主(zhu)要用于(yu)管(guan)路(lu)支架(jia)、壳(ke)体(ti)、框梁(liang)、网(wang)格(ge)结构(gou)、复杂(za)管道(dao)、薄壁(bi)件等。

        2.4.1微观(guan)组(zu)织与力学(xue)性(xing)能

        在SLM非(fei)平衡(heng)快速凝(ning)固(gu)条件下(xia),铸(zhu)造Al-Si系合金(如(ru)AlSi12合(he)金(jin))显(xian)微(wei)组织(zhi)为微(wei)细(xi)的富Al胞结构(gou),残余(yu)Si颗粒(li)从(cong)晶界析出;热处(chu)理后(hou),显(xian)微(wei)组织发(fa)生一定(ding)程(cheng)度的粗化,Si组(zu)元从晶(jing)胞(bao)中(zhong)继(ji)续析(xi)出并形成(cheng)Si颗粒(li)[83]。SLM成形(xing)的(de)AlSi10Mg合金(jin)显(xian)微组(zu)织(zhi)及(ji)演(yan)变(bian)规(gui)律(lv)与AlSi12合金相(xiang)似(shi)[84]。AlSi10Mg合(he)金(jin)在(zai)SLM成(cheng)形(xing)过程中并不(bu)析出Mg2Si相[85],直接(jie)低(di)温(wen)时效后强度(du)显(xian)著(zhu)提高(gao)(表5)。

        b2.jpg

        激(ji)光增(zeng)材(cai)制造(zao)工(gong)艺(yi)参数(如激(ji)光光斑(ban)尺寸、激光(guang)功率、扫(sao)描速度、扫(sao)描间距(ju)、铺粉厚(hou)度等(deng))、成(cheng)形方向(xiang)、成(cheng)形(xing)件布(bu)局(ju)方(fang)式等(deng)均(jun)显著影(ying)响构(gou)件(jian)的(de)成形(xing)质量(liang)、显微组织(zhi)和力学(xue)性能(neng)。近年(nian)来,对(dui)SLM成形AlSi10Mg合(he)金(jin)的(de)工(gong)艺参数(shu)、显微(wei)组(zu)织(zhi)和(he)力学性能(neng)进(jin)行了系统研(yan)究(jiu),建立(li)了(le)成形(xing)工艺(yi)及热处(chu)理(li)与显(xian)微组(zu)织和力学性(xing)能(neng)的(de)相关性[86-90],发现沉积(ji)态AlSi10Mg合金(jin)具(ju)有较高(gao)的残余应(ying)力和(he)显(xian)著的(de)组(zu)织(zhi)各向异性[91-95]。笔(bi)者团队进(jin)一(yi)步研(yan)究(jiu)发现,沉(chen)积(ji)态(tai)AlSi10Mg合(he)金的(de)拉(la)伸性能各(ge)向(xiang)异(yi)性主(zhu)要与承载面熔池(chi)界(jie)面分布有(you)关(guan),承受载荷(he)的(de)熔池(chi)界面(mian)越(yue)少强度和(he)塑性越好(hao)[96]。此外(wai),热处(chu)理(li)能(neng)有效降(jiang)低(di)或(huo)消(xiao)除残(can)余应力(li),弱(ruo)化(hua)显(xian)微组(zu)织和(he)力学(xue)性能(neng)的(de)各(ge)向(xiang)异性(xing),但会造成组(zu)织粗化(hua)和(he)强(qiang)度(du)降(jiang)低(di)(表(biao)5)[97]。

        由于(yu)锻造铝合(he)金(jin)极(ji)易开(kai)裂,难以通过(guo)增(zeng)材制(zhi)造(zao)获得(de)需要的(de)显微组(zu)织和(he)力(li)学(xue)性能,迫(po)切(qie)希(xi)望(wang)通过(guo)优化(hua)化学(xue)成(cheng)分和(he)设计来解决这(zhe)一(yi)难(nan)题。研究(jiu)发现(xian),添(tian)加Zr、Sc、Ti等元素(su)可(ke)显著(zhu)降(jiang)低锻(duan)造(zao)铝(lv)合金(jin)增材(cai)制造过(guo)程(cheng)中(zhong)的开(kai)裂敏(min)感(gan)性,促进(jin)细小(xiao)等轴晶形(xing)成,提升(sheng)铝(lv)合金(jin)的(de)强(qiang)度和(he)塑性(xing)[82,98-102]。此外(wai),将(jiang)陶瓷颗(ke)粒(li)与(yu)铝合金(jin)粉(fen)末(mo)均匀混(hun)合(he)后制备铝基(ji)复合(he)材料也可获(huo)得良好的(de)成形质量和细(xi)小的(de)微(wei)观结(jie)构,并显著提(ti)高(gao)强(qiang)度、硬度和(he)耐(nai)磨性(xing)[103-107]。

        目前,铝(lv)合金增(zeng)材(cai)制(zhi)造(zao)研(yan)究(jiu)大多(duo)基于(yu)传统合(he)金(jin),新(xin)型铝(lv)合金(jin)开(kai)发也取(qu)得(de)了一(yi)定(ding)进展(zhan)[9,108]。虽(sui)然增(zeng)材(cai)制造技术(shu)独(du)特(te)的快(kuai)速熔化(hua)和(he)快速(su)凝(ning)固(gu)过程可(ke)获(huo)得异(yi)于(yu)传(chuan)统(tong)工艺(yi)制备(bei)的(de)材料的(de)组(zu)织和均质(zhi)化(hua)效果(guo),但(dan)铝(lv)合金(jin)高裂(lie)纹倾(qing)向(xiang)和柱(zhu)状(zhuang)组织粗化的(de)问(wen)题仍困扰(rao)和制(zhi)约(yue)铝合(he)金(jin)增(zeng)材(cai)制造的(de)研究(jiu)与应用(yong),完善(shan)增(zeng)材制(zhi)造(zao)铝合金(jin)的成分(fen)设(she)计理论是亟(ji)待解(jie)决(jue)的(de)问题(ti)。

        2.4.2应用(yong)实(shi)例

        增(zeng)材(cai)制造铝(lv)合金构件已(yi)在(zai)多(duo)种(zhong)型号的(de)飞(fei)机(ji)上(shang)应(ying)用。空客公(gong)司为(wei)实(shi)现减轻质(zhi)量(liang)和(he)缩短(duan)制造(zao)周期,采用(yong)增(zeng)材(cai)制造技术(shu)将(jiang)30个(ge)AlSi10Mg零(ling)件集成(cheng)设(she)计(ji)为(wei)1个零件(jian),成(cheng)功制(zhi)造(zao)了(le)A350XWB型机(ji)的垂(chui)直尾翼支架(jia),还(hai)采(cai)用(yong)SLM技(ji)术(shu)制造(zao)了A320客机(ji)的Al-Mg-Sc轻量(liang)化(hua)仿生(sheng)机(ji)舱隔离结(jie)构(gou),达到了减轻质量、降(jiang)低成本的目的[112]。2016年,英国(guo)克(ke)兰菲(fei)尔(er)德大学(xue)采用电(dian)弧(hu)增(zeng)材制(zhi)造技(ji)术(shu)成功制造了长6m、质(zhi)量300kg的铝合金双(shuang)面翼梁(liang)[113]。2020年4月(yue),美国(guo)MELDManufacturingCorporation公司采(cai)用其(qi)专(zhuan)有的(de)MELD技术(shu)(增(zeng)材(cai)搅拌摩(mo)擦(ca)沉(chen)积)制(zhi)备(bei)了直(zhi)径1.4m的(de)铝合(he)金部件(jian),同(tong)年(nian)8月(yue)又(you)成(cheng)功制备了(le)直径(jing)3.05m的(de)圆(yuan)环状铝合金(jin)结(jie)构(gou)[114]。国内(nei)相(xiang)关(guan)的增(zeng)材制造(zao)研(yan)究(jiu)机构和(he)企(qi)业(ye)也(ye)一(yi)直致力(li)于铝合金构(gou)件(jian)的(de)制(zhi)备(bei)。首(shou)都(dou)航(hang)天(tian)机械(xie)有(you)限公司、北京(jing)航(hang)星(xing)机(ji)器(qi)制造(zao)公(gong)司、华(hua)中(zhong)科(ke)技(ji)大学(xue)等(deng)分别开(kai)展了(le)航天(tian)领(ling)域(yu)用(yong)铝(lv)合(he)金支(zhi)座(zuo)、舱(cang)段(duan)、框(kuang)梁(liang)、网(wang)格(ge)等(deng)构(gou)件的试(shi)制和(he)应(ying)用,并(bing)取得(de)了(le)阶段(duan)性(xing)成(cheng)果[115]。

        3、结(jie)束(shu)语(yu)

        增材制(zhi)造(zao)金属(shu)材(cai)料(liao)在航空(kong)航天领域(yu)具有广(guang)阔(kuo)的应(ying)用场景(jing)。增(zeng)材制造(zao)铁(tie)基(ji)合(he)金(jin)、镍(nie)基合(he)金(jin)、钛(tai)合金和铝合金是(shi)目(mu)前(qian)航空(kong)航天(tian)领域(yu)广泛(fan)应用(yong)的材(cai)料(liao),用(yong)于卫星、火(huo)箭(jian)、飞机、武(wu)器(qi)装备等,推(tui)动(dong)了增(zeng)材(cai)制造(zao)金属(shu)材料市(shi)场(chang)的快(kuai)速(su)扩展(zhan)。然而(er),目前航空航(hang)天领(ling)域(yu)广(guang)泛应用(yong)的(de)增材制造合(he)金(jin)粉(fen)末(mo)主(zhu)要(yao)基(ji)于(yu)传(chuan)统(tong)块(kuai)体材料(liao)成(cheng)分,适(shi)用(yong)于(yu)增(zeng)材制(zhi)造(zao)技(ji)术(shu)的专(zhuan)用(yong)合金(jin)体系匮(kui)乏(fa)。亟须针对(dui)增材制造独特的(de)高(gao)冷(leng)却速(su)率(lv)、温度(du)梯度(du)及(ji)非平(ping)衡热(re)循环等特(te)点(dian)开(kai)发(fa)兼(jian)具良(liang)好(hao)成形(xing)性和(he)力学(xue)性能的(de)增(zeng)材制造(zao)专(zhuan)用(yong)合(he)金(jin)粉末(mo)。开发(fa)增材(cai)制(zhi)造专用(yong)合金粉末将(jiang)是航(hang)空航(hang)天(tian)用(yong)增材(cai)制造金(jin)属(shu)材料的重(zhong)要研究(jiu)方(fang)向(xiang)。

        增(zeng)材制造技(ji)术(shu)独(du)特(te)的快(kuai)速熔(rong)化及(ji)快速(su)凝固过程(cheng)可获(huo)得(de)异(yi)于(yu)采(cai)用(yong)传统(tong)工艺制(zhi)备的(de)材料的组织(zhi)和(he)均质化(hua)效果,但增(zeng)材制造(zao)铁基(ji)合(he)金(jin)、镍基(ji)合金、钛合(he)金和(he)铝合(he)金(jin)往(wang)往存(cun)在(zai)开裂倾向(xiang)大和形成(cheng)柱状组织等问(wen)题,严(yan)重(zhong)制约了增材制造(zao)技术(shu)的推(tui)广(guang)应用(yong)。通(tong)过添加(jia)合(he)金(jin)元素或(huo)者(zhe)陶瓷(ci)颗粒(li)等(deng)对(dui)增(zeng)材(cai)制造金(jin)属(shu)进行改(gai)性(xing),有望(wang)改善(shan)成(cheng)形性,获(huo)得(de)精(jing)细显(xian)微组(zu)织(zhi)。未(wei)来(lai),为满足航(hang)空(kong)航(hang)天(tian)领(ling)域对(dui)在(zai)极其(qi)严苛环境中(zhong)使用(yong)的增(zeng)材制造金(jin)属构件的需求(qiu),应通(tong)过(guo)创(chuang)新(xin)和发展(zhan)铁(tie)基(ji)合金、镍基(ji)合(he)金、钛(tai)合(he)金(jin)和(he)铝(lv)合金(jin),并结(jie)合(he)增材制造(zao)控形(xing)、控性技(ji)术(shu),实现(xian)材料(liao)−结构(gou)−性(xing)能一体化(hua)增材制(zhi)造技术(shu)的(de)应用(yong)。

        参(can)考(kao)文献

        [1]王天元, 黄(huang)帅, 周(zhou)标, 等. 航(hang)空装(zhuang)备(bei)激(ji)光(guang)增材制造技(ji)术(shu)发(fa)展(zhan)及路线(xian)图[J]. 航(hang)空材料学(xue)报(bao), 2023,43(1): 1-17.

        [2]王华(hua)明(ming). 高(gao)性(xing)能大型金属(shu)构(gou)件(jian)激光增(zeng)材制(zhi)造(zao):若(ruo)干材(cai)料基础(chu)问题(ti)[J]. 航(hang)空学报(bao), 2014, 35(10):2690-2698.

        [3]DEBROY T, WEI H L, ZUBACK J S, et al. Additive manufacturing of metallic components:process, structure and properties[J]. Progress in Materials Science, 2018, 92: 112-224.

        [4]GU D D, MEINERS W, WISSENBACH K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 2012,57(3): 133-164.

        [5]汤海波(bo), 吴宇(yu), 张述泉, 等(deng). 高性(xing)能(neng)大(da)型(xing)金(jin)属构(gou)件(jian)激光(guang)增(zeng)材制造技(ji)术研究现状(zhuang)与发展趋势(shi)[J].精(jing)密成(cheng)形(xing)工程(cheng), 2019, 11(4): 58-63.

        [6]顾冬冬(dong), 张红梅(mei), 陈洪宇, 等. 航(hang)空(kong)航(hang)天(tian)高性能金属材料(liao)构件激(ji)光(guang)增(zeng)材(cai)制造[J]. 中国激光,2020, 47(5): 24-47.

        [7]谭(tan)超林, 周克崧(song), 马(ma)文(wen)有(you), 等. 激(ji)光增材(cai)制造(zao)成(cheng)型马氏体(ti)时(shi)效(xiao)钢研究(jiu)进(jin)展(zhan)[J]. 金(jin)属学(xue)报(bao), 2020,56(1): 36-52.

        [8]孙(sun)晓峰, 宋巍, 梁(liang)静静, 等. 激(ji)光(guang)增(zeng)材制(zhi)造高(gao)温合(he)金材料(liao)与工(gong)艺(yi)研(yan)究(jiu)进展(zhan)[J]. 金属学报(bao), 2021,57(11): 1471-1483.

        [9]宋波(bo), 张(zhang)金良, 章(zhang)媛(yuan)洁(jie), 等(deng). 金(jin)属(shu)激光(guang)增材制(zhi)造(zao)材(cai)料(liao)设计(ji)研究进(jin)展[J]. 金(jin)属学报, 2023, 59(1):1-15.

        [10]林(lin)鑫, 黄(huang)卫东(dong). 应(ying)用(yong)于航(hang)空(kong)领域(yu)的金属高性(xing)能增(zeng)材(cai)制造技术(shu)[J]. 中国(guo)材料进展(zhan), 2015, 34(9):684-688.

        [11]GRADL P, TINKER D C, PARK A, et al. Robust metal additive manufacturing process selection and development for aerospace components[J]. Journal of Materials Engineering and Performance,2022, 31(8): 6013-6044.

        [12]陈(chen)超越, 王(wang)江, 王(wang)瑞鑫(xin), 等. 航(hang)空(kong)发(fa)动机(ji)及(ji)燃气轮机(ji)用(yong)关键(jian)材料(liao)的(de)激(ji)光(guang)增材(cai)制造(zao)研(yan)究(jiu)进(jin)展(zhan)[J].科技(ji)导报, 2023, 41(5): 34-48.

        [13]3d 科学(xue)谷. 航空(kong)航天(tian)制(zhi)造(zao)业(ye)常(chang)见的增材制造合(he)金(jin)材(cai)料及工艺特性[J]. 世(shi)界制(zhi)造技(ji)术与装备市(shi)场(chang), 2022(6): 28-30.

        [14]胡捷, 廖(liao)文俊(jun), 丁(ding)柳柳(liu), 等. 金属(shu)材料在(zai)增(zeng)材制(zhi)造(zao)技术中(zhong)的研究(jiu)进(jin)展(zhan)[J]. 材(cai)料(liao)导(dao)报(bao), 2014(增刊 2): 459-462.

        [15]田宗军(jun), 顾冬冬(dong), 沈(shen)理达(da), 等. 激(ji)光增(zeng)材制(zhi)造技术(shu)在航空航(hang)天(tian)领域的(de)应用与发(fa)展(zhan)[J]. 航(hang)空制造技术, 2015 (11): 41-45.

        [16]王(wang)迪, 钱泽(ze)宇(yu), 窦(dou)文(wen)豪, 等(deng). 激(ji)光(guang)选区(qu)熔(rong)化成(cheng)形(xing)高温镍(nie)基合金(jin)研(yan)究进(jin)展[J]. 航空(kong)制(zhi)造(zao)技术(shu),2018 (10): 49-60,67.

        [17]CAMPBELL I, DIEGEL O, HUFF R, et al. Wohlers Report 2022: 3D printing and additive manufacturing state of the industry[R]. Fort Collins: Wohlers Associates, 2022.

        [18] 刘(liu)振宝, 梁(liang)剑(jian)雄, 苏杰, 等. 高(gao)强度(du)不(bu)锈钢(gang)的研(yan)究(jiu)及发展现状[J]. 金属学报(bao), 2020, 56(4):549-557.

        [19]贾(jia)兴(xing)祺(qi), 李(li)伟(wei), 许元(yuan)涛(tao), 等. 基(ji)于增(zeng)材(cai)制(zhi)造(zao)的(de)钢(gang)铁(tie)块(kuai)体材料(liao)高通(tong)量实(shi)验方(fang)法(fa)[J]. 上(shang)海(hai)金属,2022, 44(2): 1-7.

        [20] 王(wang) 岩 , 魏(wei) 钢 , 魏(wei) 瑛 康 , 等(deng) . 热(re) 处(chu) 理(li) 对(dui) 选 区(qu) 激 光(guang) 熔(rong) 化 制 备 17-4PH 空(kong) 蚀(shi) 性 能 影 响(xiang) [J]. 钢铁,2023,58(10):140-150.

        [21]LI K, ZHAN J B, YANG T B, et al. Homogenization timing effect on microstructure and precipitation strengthening of 17–4PH stainless steel fabricated by laser powder bed fusion[J].Additive Manufacturing, 2022, 52: 102672.

        [22] 刘(liu)世锋(feng), 魏钢, 王(wang)岩, 等. 增材制造 17-4PH 马氏(shi)体不锈(xiu)钢(gang)研(yan)究(jiu)进(jin)展[J]. 中国(guo)冶(ye)金, 2022, 32(6):15-25.

        [23]李虎(hu), 赵(zhao)伟江(jiang), 李(li)瑞迪(di), 等(deng). 增(zeng)材(cai)制造(zao)马(ma)氏(shi)体时(shi)效钢(gang)的研(yan)究(jiu)进(jin)展(zhan)[J]. 中国激(ji)光, 2022, 49(14):15-28.

        [24]LU Y F, WANG G L, ZHANG M B, et al. Microstructures, heat treatments and mechanical properties of AerMet100 steel fabricated by hybrid directed energy deposition[J]. Additive Manufacturing, 2022, 56: 102885.

        [25]刘(liu)振(zhen)宝, 梁(liang)剑(jian)雄, 杨(yang)哲(zhe), 等(deng). 高(gao)强(qiang)度不(bu)锈(xiu)钢应(ying)用(yong)及研(yan)究进展(zhan)[J]. 中(zhong)国冶金, 2022, 32(6): 42-53.

        [26]肖(xiao)亚(ya)姣(jiao), 刘文庆, 孙光岩(yan), 等. 15-5PH 不(bu)锈(xiu)钢在(zai) 580 ℃时(shi)效过(guo)程中(zhong)的(de)析(xi)出强化(hua)行(xing)为(wei)[J]. 上(shang)海金(jin)属, 2023, 45(4): 38-44.

        [27] 王晓(xiao)辉(hui), 罗(luo)海(hai)文. 飞机(ji)起落架用超(chao)高(gao)强(qiang)度不锈(xiu)钢(gang)的研究(jiu)及(ji)应(ying)用(yong)进展(zhan)[J]. 材(cai)料(liao)工程, 2019, 47(9):1-12.

        [28]TAN C L, ZHOU K S, KUANG M, et al. Microstructural characterization and properties of selective laser melted maraging steel with different build directions[J]. Science and Technology of Advanced Materials, 2018, 19(1): 746-758.

        [29]MEI X Y, YAN Y, FU H D, et al. Effect of aging temperature on microstructure evolution and strengthening behavior of L-PBF 18Ni(300) maraging steel[J]. Additive Manufacturing, 2022, 58:103071.

        [30]TAN C L, ZHOU K, MA W, et al. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel[J].Materials & Design, 2017, 134: 23-34.

        [31]CONDE F F, AVILA J A, OLIVEIRA J P, et al. Effect of the as-built microstructure on the martensite to austenite transformation in a 18Ni maraging steel after laser-based powder bed fusion[J]. Additive Manufacturing, 2021, 46: 102122.

        [32]ERES-CASTELLANOS A, SANTANA A, DE-CASTRO D, et al. Effect of processing parameters on texture and variant selection of as-built 300 maraging steel processed by laser powder bed fusion[J]. Scientific Reports, 2022, 12(1): 16168.

        [33]HABASSI F, HOURIA M, BARKA N, et al. Influence of post-treatment on microstructure and mechanical properties of additively manufactured C300 maraging steel[J]. Materials Characterization, 2023, 202: 112980.

        [34]KANNAN R, LEONARD D N, NANDWANA P. Optimization of direct aging temperature of Ti free grade 300 maraging steel manufactured using laser powder bed fusion (LPBF)[J]. Materials Science and Engineering A, 2021, 817: 141266.

        [35]YIN S, CHEN C Y, YAN X C, et al. The influence of aging temperature and aging time on the mechanical and tribological properties of selective laser melted maraging 18Ni-300 steel[J].Additive Manufacturing, 2018, 22: 592-600.

        [36]BODZIAK S, AL-RUBAIE K S, VALENTINA L D, et al. Precipitation in 300 grade maraging steel built by selective laser melting: aging at 510 ℃ for 2 h[J]. Materials Characterization, 2019,151: 73-83.

        [37]ZHANG B, WANG H M, RAN X Z, et al. Microstructure and mechanical properties of high-efficiency laser-directed energy deposited 15-5PH stainless steel[J].Materials Characterization, 2022, 190: 112080.

        [38]常坤, 梁(liang)恩泉(quan), 张韧, 等(deng). 金属(shu)材(cai)料(liao)增(zeng)材(cai)制(zhi)造(zao)及其(qi)在民(min)用航(hang)空(kong)领(ling)域(yu)的(de)应用(yong)研究现状(zhuang)[J]. 材(cai)料导(dao)报(bao), 2021, 35(3): 3176-3182.

        [39]杨(yang)爱(ai)民, 秦仁(ren)耀(yao), 张国(guo)栋, 等. 飞(fei)机金(jin)属零(ling)件(jian)焊接(jie)及增(zeng)材制(zhi)造(zao)修复(fu)研究(jiu)与(yu)应用现(xian)状(zhuang)[J]. 电焊机(ji), 2021, 51(8): 79-87.

        [40]SANCHEZ S, SMITH P, XU Z K, et al. Powder bed fusion of nickel-based superalloys: a review[J]. International Journal of Machine Tools and Manufacture, 2021, 165: 103729.

        [41]陈娇(jiao), 罗(luo)桦, 贺(he)戬, 等. 航天(tian)用(yong)镍(nie)基高温合金及(ji)其(qi)激光(guang)增材制(zhi)造研究(jiu)现(xian)状(zhuang)[J]. 精密(mi)成(cheng)形(xing)工(gong)程(cheng),2023, 15(1): 156-169.

        [42]KWABENA ADOMAKO N, HAGHDADI N, PRIMIG S. Electron and laser-based additive manufacturing of Ni-based superalloys: a review of heterogeneities in microstructure and mechanical properties[J]. Materials & Design, 2022, 223: 111245.

        [43]师梦杰(jie), 毛(mao)强, 郑合凤(feng), 等(deng). 镍基合金中 γ'相(xiang)直线(xian)排列形(xing)貌的形(xing)成机制(zhi)研究[J]. 上海(hai)金(jin)属(shu),2021, 43(1): 77-82.

        [44]ZHANG M H, ZHANG B C, WEN Y J, et al. Research progress on selective laser melting processing for nickel-based superalloy[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(3): 369-388.

        [45]HOSSEINI E, POPOVICH V A. A review of mechanical properties of additively manufactured Inconel 718[J]. Additive Manufacturing, 2019, 30: 100877.

        [46]李(li)雅莉(li), 雷(lei)力明, 侯慧鹏(peng), 等(deng). 热工艺对(dui)激光(guang)选(xuan)区熔化(hua) Hastelloy X 合(he)金(jin)组织及(ji)拉伸性能的(de)影(ying)响[J]. 材(cai)料(liao)工程, 2019, 47(5): 100-106.

        [47]FERRARESI R, AVANZINI A, CECCHEL S, et al. Microstructural, mechanical, and tribological evolution under different heat treatment conditions of Inconel 625 alloy fabricated by selective laser melting[J]. Advanced Engineering Materials, 2022, 24(4): 2100966.

        [48]POPOVICH V A, BORISOV E V, POPOVICH A A, et al. Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting[J].Materials & Design, 2017, 131: 12-22.

        [49]ZHANG L, LI Y T, ZHANG Q D, et al. Microstructure evolution, phase transformation and mechanical properties of IN738 superalloy fabricated by selective laser melting under different heat treatments[J]. Materials Science and Engineering A, 2022, 844: 142947.

        [50]QI H, AZER M, RITTER A. Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured Inconel 718[J]. Metallurgical and Materials Transactions A, 2009, 40(10): 2410-2422.

        [51]HUANG L, CAO Y, ZHANG J H, et al. Effect of heat treatment on the microstructure evolution and mechanical behaviour of a selective laser melted Inconel 718 alloy[J]. Journal of Alloys and Compounds, 2021, 865: 158613.

        [52]ZHANG Y C, LI Z G, NIE P L, et al. Effect of heat treatment on niobium segregation of laser-cladded IN718 alloy coating[J]. Metallurgical and Materials Transactions A, 2013, 44(2):708-716.

        [53]TUCHO W M, HANSEN V. Characterization of SLM-fabricated Inconel 718 after solid solution and precipitation hardening heat treatments[J]. Journal of Materials Science, 2019, 54(1):823-839.

        [54]LI X, SHI J J, CAO G H, et al. Improved plasticity of Inconel 718 superalloy fabricated by selective laser melting through a novel heat treatment process[J]. Materials & Design, 2019, 180:107915.

        [55]KAKEHI K, BANOTH S, KUO Y L, et al. Effect of yttrium addition on creep properties of a Ni-base superalloy built up by selective laser melting[J]. Scripta Materialia, 2020, 183: 71-74.

        [56]王海丽(li). 元(yuan)素 Re 和(he) W 对(dui)选(xuan)区(qu)激光熔(rong)化 GH4169 镍基合金(jin)组(zu)织及(ji)性(xing)能的影响(xiang)[D]. 太(tai)原(yuan):中北(bei)大学, 2015.

        [57]ZHANG B C, BI G J, NAI S, et al. Microhardness and microstructure evolution of TiB2 reinforced Inconel 625/TiB2 composite produced by selective laser melting[J]. Optics & Laser Technology, 2016, 80: 186-195.

        [58]CHEN L, SUN Y Z, LI L, et al. Effect of heat treatment on the microstructure and high temperature oxidation behavior of TiC/Inconel 625 nanocomposites fabricated by selective laser melting[J]. Corrosion Science, 2020, 169: 108606.

        [59]王(wang)文权(quan), 王苏煜(yu), 陈(chen)飞(fei), 等(deng). 选(xuan)区(qu)激(ji)光(guang)熔(rong)化(hua)成(cheng)形(xing) TiN/Inconel 718 复(fu)合(he)材(cai)料的(de)组(zu)织(zhi)和(he)力学(xue)性能[J]. 金属(shu)学(xue)报, 2021, 57(8): 1017-1026.

        [60]RAMESH KUMAR S, SRINIVAS V, JAGAN REDDY G, et al. 3D printing of fuel injector in IN718 alloy for missile applications[J]. Transactions of the Indian National Academy of Engineering, 2021, 6(4): 1099-1109.

        [61]GRADL P R, PROTZ C S. Technology advancements for channel wall nozzle manufacturing in liquid rocket engines[J]. Acta Astronautica, 2020, 174: 148-158.

        [62]3D Science Valley. HEWAM: heat exchanger with additive manufacturing[EB/OL]. (2019-06-17)[2023-10-01]. http://en.51shape.com/?p=1751.

        [63]VILARO T, COLIN C, BARTOUT J D. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting[J]. Metallurgical and Materials Transactions A, 2011, 42(10): 3190-3199.

        [64]LI J H, ZHOU X L, BROCHU M, et al. Solidification microstructure simulation of Ti-6Al-4V in metal additive manufacturing: a review[J]. Additive Manufacturing, 2020, 31: 100989.

        [65]LIU S, SHIN Y C. Additive manufacturing of Ti6Al4V alloy: a review[J]. Materials & Design,2019, 164: 107552.

        [66]SIMONELLI M, TSE Y Y, TUCK C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V[J]. Materials Science and Engineering A, 2014, 616: 1-11.

        [67]NARTU M S K K Y, WELK B A, MANTRI S A, et al. Underlying factors determining grain morphologies in high-strength titanium alloys processed by additive manufacturing[J]. Nature Communications, 2023, 14(1): 3288-3297.

        [68]PANG X T, XIONG Z H, LIU S L, et al. Laser melting deposition of CP-Ti/Ti-0.4Ni graded material for structural applications[J]. Metallurgical and Materials Transactions A, 2021, 52(11):4742-4748.

        [69]XIONG Z H, PANG X T, LIU S L, et al. Hierarchical refinement of nickel-microalloyed titanium during additive manufacturing[J]. Scripta Materialia, 2021, 195: 113727.

        [70]LIU L, MINASYAN T, IVANOV R, et al. Selective laser melting of TiB2-Ti composite with high content of ceramic phase[J]. Ceramics International, 2020, 46(13): 21128-21135.

        [71]PATIL A S, HIWARKAR V D, VERMA P K, et al. Effect of TiB2 addition on the microstructure and wear resistance of Ti-6Al-4V alloy fabricated through direct metal laser sintering (DMLS)[J].Journal of Alloys and Compounds, 2019, 777: 165-173.

        [72]LI W, YANG Y, LIU J, et al. Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2 in-situ metal matrix composites prepared via selective laser melting[J]. Acta Materialia, 2017, 136: 90-104.

        [73]QIU D, ZHANG D, EASTON M A, et al. Refining as-cast β-Ti grains through ZrN inoculation[J]. Metallurgical and Materials Transactions A, 2018, 49(5): 1444-1449.

        [74]PANG X D, XIONG Z H, LIU S L, et al. Grain refinement effect of ZrB2 in laser additive manufactured metastable β-titanium alloy with enhanced mechanical properties[J]. Materials Science and Engineering A, 2022, 857: 144104.

        [75]PANTAWANE M V, SHARMA S, SHARMA A, et al. Coarsening of martensite with multiple generations of twins in laser additively manufactured Ti6Al4V[J]. Acta Materialia, 2021, 213:116954.

        [76]ZHANG D Y, QIU D, GIBSON M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys[J]. Nature, 2019, 576(7785): 91-95.

        [77]ATTAR H, CALIN M, ZHANG L C, et al. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium[J]. Materials Science and Engineering A, 2014, 593:170-177.

        [78]TODARO C J, EASTON M A, QIU D, et al. Grain structure control during metal 3D printing by high-intensity ultrasound[J]. Nature Communications, 2020, 11(1): 142-161.

        [79]唐洪(hong)奎(kui), 卓(zhuo)君, 马(ma)宽, 等. 航(hang)空(kong)航(hang)天(tian)钛(tai)合金(jin)结构件(jian)增(zeng)材制造技术[J]. 金(jin)属加(jia)工(gong)(热(re)加(jia)工),2020(8): 14-17.

        [80]孙(sun)世(shi)杰(jie). 增材(cai)制造方(fang)法生产(chan)的(de) TiAl 合金(jin)零件(jian)将(jiang)被(bei)应用于飞(fei)机发(fa)动(dong)机涡(wo)轮叶(ye)片[J]. 粉(fen)末(mo)冶金工(gong)业(ye), 2015(1): 65-66.

        [81]ABOULKHAIR N T, SIMONELLI M, PARRY L, et al. 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting[J]. Progress in Materials Science,2019, 106: 100578.

        [82]MARTIN J H, YAHATA B D, HUNDLEY J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549(7672): 365-369.

        [83]PRASHANTH K G, SCUDINO S, KLAUSS H J, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: effect of heat treatment[J]. Materials Science and Engineering A, 2014, 590: 153-160.

        [84]WU J, WANG X Q, WANG W, et al. Microstructure and strength of selectively laser melted AlSi10Mg[J]. Acta Materialia, 2016, 117: 311-320.

        [85]THIJS L, KEMPEN K, KRUTH J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 2013,61(5): 1809-1819.

        [86]张(zhang)文(wen)奇(qi), 朱海红(hong), 胡(hu)志恒(heng), 等(deng). AlSi10Mg 的激光选(xuan)区(qu)熔(rong)化(hua)成(cheng)形研(yan)究[J]. 金属学(xue)报(bao), 2017, 53(8):918-926.

        [87]闫(yan)泰(tai)起, 唐(tang)鹏(peng)钧, 陈(chen)冰(bing)清, 等. 退火温(wen)度对激(ji)光(guang)选(xuan)区(qu)熔化(hua) AlSi10Mg 合(he)金微观(guan)组(zu)织(zhi)及拉(la)伸性(xing)能(neng)的影(ying)响[J]. 机械(xie)工(gong)程学(xue)报(bao), 2020, 56(8): 37-45.

        [88]ZHOU L, MEHTA A, SCHULZ E, et al. Microstructure, precipitates and hardness of selectively laser melted AlSi10Mg alloy before and after heat treatment[J]. Materials Characterization, 2018,143: 5-17.

        [89]DOMFANG NGNEKOU J N, NADOT Y, HENAFF G, et al. Fatigue properties of AlSi10Mg produced by additive layer manufacturing[J]. International Journal of Fatigue, 2019, 119: 160-172.

        [90]ROSENTHAL I, SHNECK R, STERN A. Heat treatment effect on the mechanical properties and fracture mechanism in AlSi10Mg fabricated by additive manufacturing selective laser melting process[J]. Materials Science and Engineering A, 2018, 729: 310-322.

        [91]侯伟, 陈静, 储(chu)松(song)林(lin), 等(deng). 选区(qu)激(ji)光熔(rong)化(hua)成(cheng)形(xing) AlSi10Mg 组织(zhi)与(yu)拉伸性(xing)能(neng)的(de)各向异性研究(jiu)[J].中国(guo)激(ji)光(guang), 2018, 45(7): 61-71.

        [92]JIANG X H, YE T, ZHU Y H. Effect of process parameters on residual stress in selective laser melting of AlSi10Mg[J]. Materials Science and Technology, 2020, 36(3): 342-352.

        [93]PADOVANO E, BADINI C, PANTARELLI A, et al. A comparative study of the effects of thermal treatments on AlSi10Mg produced by laser powder bed fusion[J]. Journal of Alloys and Compounds, 2020, 831: 154822.

        [94]STRUMZA E, YEHESKEL O, HAYUN S. The effect of texture on the anisotropy of thermophysical properties of additively manufactured AlSi10Mg[J]. Additive Manufacturing,2019, 29: 100762.

        [95]张宇(yu)杰, 于(yu)梅(mei)花(hua), 杨(yang)瑞霞(xia), 等(deng). 稀土(tu) Sc 对激光(guang)制(zhi)备 AlSi10Mg 合(he)金性(xing)能(neng)的(de)影响(xiang)[J]. 中国(guo)激光(guang),2020, 47(8): 82-90.

        [96]XIONG Z H, LIU S L, LI S F, et al. Role of melt pool boundary condition in determining the mechanical properties of selective laser melting AlSi10Mg alloy[J]. Materials Science and Engineering A, 2019, 740/741: 148-156.

        [97]余开(kai)斌, 刘(liu)允(yun)中(zhong), 杨长(zhang)毅. 热(re)处(chu)理对选区激光(guang)熔化(hua)成(cheng)形(xing) AlSi10Mg 合金(jin)显(xian)微(wei)组织(zhi)及(ji)力学性(xing)能的(de)影(ying)响[J]. 粉末冶金(jin)材(cai)料科学与工(gong)程(cheng), 2018, 23(3): 298-305.

        [98]ZHANG H, ZHU H H, NIE X J, et al. Effect of zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy[J]. Scripta Materialia, 2017, 134:6-10.

        [99]NIE X J, ZHANG H, ZHU H H, et al. Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24Cu-1.97Mg-0.56Mn alloys[J].Journal of Alloys and Compounds, 2018, 764: 977-986.

        [100] LI R D, WANG M B, LI Z M, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms[J]. Acta Materialia, 2020, 193: 83-98.

        [101] JIA Q B, ROMETSCH P, KÜRNSTEINER P, et al. Selective laser melting of a high strength AlMnSc alloy: alloy design and strengthening mechanisms[J]. Acta Materialia, 2019, 171:108-118.

        [102] ZHANG J L, GAO J B, SONG B, et al. A novel crack-free Ti-modified Al-Cu-Mg alloy designed for selective laser melting[J]. Additive Manufacturing, 2021, 38: 101829.

        [103] GU D D, WANG H Q, DAI D H, et al. Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting[J]. Scripta Materialia, 2015, 96: 25-28.

        [104] LI X P, JI G, CHEN Z, et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility[J]. Acta Materialia, 2017, 129: 183-193.

        [105] TAN H, HAO D P, AL-HAMDANI K, et al. Direct metal deposition of TiB2/AlSi10Mg composites using satellited powders[J]. Materials Letters, 2018, 214: 123-126.

        [106] GAO C F, XIAO Z Y, LIU Z Q, et al. Selective laser melting of nano-TiN modified AlSi10Mg composite powder with low laser reflectivity[J]. Materials Letters, 2019, 236: 362-365.

        [107] GAO C, WANG Z, XIAO Z, et al. Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: Microstructural, interfacial, and mechanical properties[J]. Journal of Materials Processing Technology, 2020, 281: 116618.

        [108] 林(lin)研(yan), 司(si)丞, 徐(xu)京(jing)豫, 等. 选(xuan)区激(ji)光(guang)熔(rong)化(hua)高强(qiang)韧(ren)铝合金的(de)异(yi)质(zhi)结(jie)构(gou)调控及(ji)力(li)学性(xing)能[J]. 金(jin)属(shu)学(xue)报, 2022, 58(11): 1509-1518.

        [109] MING X L, SONG D R, YU A T, et al. Effect of heat treatment on microstructure, mechanical and thermal properties of selective laser melted AlSi7Mg alloy[J]. Journal of Alloys and Compounds,2023, 945: 169278.

        [110] AHN S Y, MOON J, CHOI Y T, et al. A precipitation-hardened AlSi10Mg alloy fabricated using selective laser melting[J]. Materials Science and Engineering A, 2022, 844: 143164.

        [111] RASHID R, MASOOD S H, RUAN D, et al. Effect of energy per layer on the anisotropy of selective laser melted AlSi12 aluminium alloy[J]. Additive Manufacturing, 2018, 22: 426-439.

        [112] 吴皓平(ping). 增(zeng)材(cai)制(zhi)造(zao)在民(min)机(ji)产业(ye)的应(ying)用[J]. 大飞(fei)机(ji), 2023(4): 14-20.

        [113] 孙世(shi)杰. 英(ying)国(guo)克(ke)兰(lan)菲尔德大学(xue)使用(yong)增(zeng)材制造(zao)技(ji)术(shu)制作(zuo)大(da)型(xing)金(jin)属(shu)结构件(jian)[J]. 粉(fen)末冶(ye)金工(gong)业(ye),2017, 27(2): 46.

        [114] 张(zhang)春杰, 齐(qi)超琪(qi), 赵(zhao)凯(kai), 等(deng). 大型(xing)航空(kong)航(hang)天(tian)铝(lv)合(he)金承力(li)构(gou)件(jian)增(zeng)材制造技(ji)术[J]. 电焊机(ji), 2021,51(8): 39-54.

        [115] 朱忠良(liang), 赵(zhao)凯(kai), 郭(guo)立杰, 等(deng). 大型(xing)金(jin)属构(gou)件增材(cai)制(zhi)造(zao)技(ji)术(shu)在航空(kong)航(hang)天(tian)制(zhi)造中(zhong)的应(ying)用(yong)及其发(fa)展(zhan)趋(qu)势[J]. 电焊(han)机, 2020, 50(1): 1-14.

        相关(guan)链(lian)接(jie)

        Copyright © 2022 宝鸡(ji)市凯(kai)泽金(jin)属(shu)材料(liao)有(you)限公(gong)司(si) 版(ban)权所(suo)有    陕ICP备(bei)19019567号(hao)    在(zai)线统(tong)计(ji)
        © 2022 宝鸡市凯泽金属材料有限公司 版权所有
        在线客服
        客服电话

        全国免费服务热线
        0917 - 3376170
        扫一扫

        kzjsbc.com
        凯泽金属手机网

        返回顶部
        xRjLU
        ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁠⁠‌‍
        ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢⁠⁠‍
        ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢‍‌⁣‍⁠‍⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠⁠⁢⁣‍‌‍
        ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌‍⁢‌‍
        ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌‍⁢⁠‍⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢‍⁢⁣‌⁠‍‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁣‌‍
        ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠‌⁢‌⁠‍⁠‍

        ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁠‌⁢‍
        ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢⁢‌⁣‍⁠‍
      • ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢⁣‍⁠‌⁢‍
      • ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁠⁢⁤‍⁢‌

        ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤⁠⁠‍
        <label id="gaJw">⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁠‌‍⁢‌⁠‍</label>
        ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠⁠⁣⁢‌⁢‌‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌‍⁢⁠‍

        ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤⁢‌‍⁠⁣‍

        ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢⁠⁠‍

        ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠⁢‌‍⁢⁤‍
        ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤‍⁢‍
        ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢‍⁢‍
        ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢⁢⁠‍
        ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤‌⁣‍‌⁣
        ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢‍⁢‌
        ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠‌⁠‍⁢‌⁢‍‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤⁢⁠‍‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢⁤‍

        ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢⁠⁠‍
        ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁢‌⁣⁠⁢‌
        ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁠‍⁠‍
        ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤‍⁠‍⁢⁣‍⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢‌⁠⁣⁠‌‍

        ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢⁢⁠‍⁢‌⁣

        ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁠⁠⁢‍
        ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤⁣‍⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢‍‌‍⁠‌⁣‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁣⁠‍⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍‌⁠‍⁢‍‌‍‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁣⁣
        1. <tt id="gaJw">⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁣⁠‍⁠⁣‍</tt>⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢⁣‍⁠⁢⁠‍‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤⁠⁣
          ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠‍‌⁣‍⁢‌⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤⁢‌⁣⁠‌‍
          ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤⁣‍⁤⁣
          ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤‍⁠‍
          ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢⁠⁠‍
          ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁠⁢‌⁣⁠‍
          ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠⁢‌‍⁠‍⁢‌⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤⁢⁠⁣‍⁠‍

          ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁤‍⁠‍⁠‍

          ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌‍⁠⁢‍
          ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁠‌⁢‍
          ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤‍⁢‍
          ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢⁤‍

          ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠‍⁠⁣⁠⁢‍
          ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢‌⁠‍⁠⁤‍
          ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠⁠‌⁣‌⁢‌
          ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢⁢⁠‍⁠‍‌‍
          ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢⁠⁠‍⁤⁢‍
        2. ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤⁢‌‍⁤⁢‌
        3. ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌‍‌⁠‍

          ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠⁠⁣‍‌⁢‌
        4. ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤⁠⁣‌⁠⁣⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁢⁠‌⁢‌⁢‌‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁣⁢‍
            ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤⁠⁣⁣⁢‍
          ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢⁢⁣⁢‍⁢‌
          <del id="gaJw"><tbody id="gaJw"></tbody></del>
        5. ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁠⁢‍‌‍⁢‌
          ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤‍⁢‍
          ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠‌⁢‍‌⁠⁢‍

          ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢⁢‌‍⁢‌⁢‍‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌‍⁠⁢‍‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤‍⁢‍
          ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤‍‌‍⁠⁠‌‍

          ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠‍⁠‍‌⁠⁢‍

          ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤‍⁢‌⁠⁠‌‍‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁠⁢⁠‍⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤‌⁢‌‍‌⁠‍
          ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢‌⁢‌‍‌⁠‍
          ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌‍⁠⁠‍
        6. ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤⁠⁣
        7. ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢⁢‌‍‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁣⁠‍
          ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠‌⁠⁣⁢‌‍
            ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁠⁣⁠‍⁢‌⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁢⁠‌⁠⁢‌‍
            ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁤‍⁠‍⁢‍⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁣⁢‌⁠‌⁣
            ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁠⁢‌⁠‌⁠‍

            ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁣⁣

            ‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍⁤‍‌‍
            ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍⁠⁣⁠⁠⁣
            ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁠⁢‌‍‌⁠⁣⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤‌⁢‍⁢‌⁣‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁢‍⁠‍⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌‍‌⁢‌⁠⁠⁣‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌‍‌⁢‌‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁠⁠⁢‍⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢⁠‌‍⁢⁢⁠‍‍⁤⁤⁤⁤⁤⁤⁤⁤‌‍‌⁣⁢‌
            ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠⁤⁠⁠‍⁢‍⁠‍
            ⁠⁤⁤⁤⁤⁤⁤⁤⁤‌⁠‌⁢‍⁠‍‌⁠⁣